Guide to Instruments and Methods of Observation

Volume II – Measurement of cryospheric variables

2023 edition
CHAPTER 3. MEASUREMENT OF GLACIERS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 General</td>
<td>45</td>
</tr>
<tr>
<td>3.1.1 Summary</td>
<td>45</td>
</tr>
<tr>
<td>3.1.2 Introduction</td>
<td>46</td>
</tr>
<tr>
<td>3.1.3 Definition</td>
<td>46</td>
</tr>
<tr>
<td>3.1.4 Glaciers around the world</td>
<td>47</td>
</tr>
<tr>
<td>3.1.5 Variables used in mass-balance observations</td>
<td>47</td>
</tr>
<tr>
<td>3.2 Glacier inventories and classification schemes</td>
<td>47</td>
</tr>
<tr>
<td>3.2.1 Glacier inventories</td>
<td>47</td>
</tr>
<tr>
<td>3.2.2 Characterizing glaciers</td>
<td>48</td>
</tr>
<tr>
<td>3.2.3 Glacier classification</td>
<td>50</td>
</tr>
<tr>
<td>3.2.4 Selecting glaciers for measurement</td>
<td>50</td>
</tr>
<tr>
<td>3.3 Outlines and areas of glaciers</td>
<td>53</td>
</tr>
<tr>
<td>3.3.1 Introduction</td>
<td>53</td>
</tr>
<tr>
<td>3.3.2 Generating glacier outlines</td>
<td>53</td>
</tr>
<tr>
<td>3.4 Thickness and volume of glaciers</td>
<td>56</td>
</tr>
<tr>
<td>3.4.1 Radio-echo sounding to determine glacier thickness</td>
<td>56</td>
</tr>
<tr>
<td>3.4.2 Determination of bedrock topography and glacier volume</td>
<td>59</td>
</tr>
<tr>
<td>3.4.3 Measurement error and uncertainties</td>
<td>59</td>
</tr>
<tr>
<td>3.4.4 Global-scale compilation of ice-thickness measurements</td>
<td>60</td>
</tr>
<tr>
<td>3.5 Measurements of glacier front variations and length</td>
<td>61</td>
</tr>
<tr>
<td>3.5.1 Background</td>
<td>61</td>
</tr>
<tr>
<td>3.5.2 Front variation measurements – field data</td>
<td>61</td>
</tr>
<tr>
<td>3.5.3 Front variation and length change reporting</td>
<td>62</td>
</tr>
<tr>
<td>3.5.4 Length change from other sources</td>
<td>62</td>
</tr>
<tr>
<td>3.5.5 Uncertainty</td>
<td>63</td>
</tr>
<tr>
<td>3.6 Mass balance terminology and reporting systems</td>
<td>63</td>
</tr>
<tr>
<td>3.6.1 Mass balance terminology</td>
<td>64</td>
</tr>
<tr>
<td>3.6.2 Mass-balance reporting systems</td>
<td>66</td>
</tr>
<tr>
<td>3.7 Surface accumulation measurements</td>
<td>68</td>
</tr>
<tr>
<td>3.7.1 Manual measurements of snow depth and density on glaciers</td>
<td>68</td>
</tr>
<tr>
<td>3.7.2 Snow-depth measurements with ground penetrating radar techniques</td>
<td>72</td>
</tr>
<tr>
<td>3.8 Surface ablation measurements</td>
<td>73</td>
</tr>
<tr>
<td>3.8.1 Ablation stakes on glaciers and ice caps</td>
<td>73</td>
</tr>
<tr>
<td>3.8.2 Drilling equipment</td>
<td>75</td>
</tr>
<tr>
<td>3.8.3 Stake placement and readings</td>
<td>75</td>
</tr>
<tr>
<td>3.8.4 Autonomous ablation measurements on glaciers</td>
<td>79</td>
</tr>
<tr>
<td>3.8.5 Sources of error and uncertainties</td>
<td>81</td>
</tr>
<tr>
<td>3.9 Calculating mass balance</td>
<td>82</td>
</tr>
<tr>
<td>3.9.1 Methods to display and calculate mass balance</td>
<td>82</td>
</tr>
<tr>
<td>3.9.2 Geodetic methods to determine mass balance</td>
<td>85</td>
</tr>
<tr>
<td>3.9.3 Detecting and correcting bias in glaciological mass-balance records</td>
<td>86</td>
</tr>
<tr>
<td>3.9.4 Uncertainty in mass changes determined based on the geodetic method</td>
<td>86</td>
</tr>
<tr>
<td>Appendix. Safety measures during fieldwork on glaciers</td>
<td>88</td>
</tr>
<tr>
<td>References</td>
<td>91</td>
</tr>
</tbody>
</table>
FOREWORD

WMO Guides describe the practices and procedures that Members are invited to follow or implement in establishing and conducting their arrangements for compliance with the WMO Technical Regulations.

One longstanding publication in this series is the *Guide to Instruments and Methods of Observation* (WMO-No. 8), which was first published in 1950. The Guide is the authoritative reference for all matters related to instrumentation and methods of observation in the context of the WMO Integrated Global Observing System (WIGOS). Uniform, traceable and high-quality observational data represent an essential input for most WMO applications, such as climate monitoring, numerical weather prediction, nowcasting and severe weather forecasting, all of which facilitate the improvement of the well-being of societies around the world.

The main purpose of the Guide is to provide guidance on the most effective practices and procedures for undertaking meteorological, hydrological and related environmental measurements and observations in order to meet specific requirements for different application areas. It also provides information on the capabilities of instruments and systems that are regularly used to perform such observations. The theoretical basis of the techniques and observational methods is outlined in the text and supported by references and further reading for additional background information and details.

The continuous evolution and standardization of measurement and observational practices and the rapid development of new measurement techniques and technologies have led to the evolution of the Guide into a significantly larger publication that constitutes a fundamental and essential source of information. Beginning with the 2018 edition, the Guide has been separated into “volumes” that can be updated and published independently.

The outline of the current Guide is:

- Volume I – Measurement of Meteorological Variables
- Volume II – Measurement of Cryospheric Variables
- Volume III – Observing Systems
- Volume IV – Space-based Observations
- Volume V – Quality Assurance and Management of Observing Systems

This 2023 edition of Volume II was approved by the WMO Executive Council at its seventy sixth session (EC-76). In comparison to the 2018 edition of Volume II, this edition includes updates to Chapter 2 – Measurement of snow, and a new Chapter 3 – Measurement of glaciers.

In the process of updating this chapter, WMO benefited from excellent collaboration between Global Cryosphere Watch community experts and the Standing Committee on Measurements, Instrumentation and Traceability of the Commission for Observation, Infrastructure and Information Systems and its Editorial Board. In particular, I would like to acknowledge important contributions from the following experts: Craig Smith (Environment and Climate Change Canada, Canada), Charles Fierz, Anna Haberkorn and Christoph Marty (WSL Institute for Snow and Avalanche Research, Switzerland) for Chapter 2 – Measurement of snow; and Thorsteinn Thorsteinsson (Icelandic Meteorological Office, Iceland), Jakob Abermann (Department of Geography and Regional Science, University of Graz, Austria), Liss M. Andreassen (Norwegian...
Water Resources and Energy Directorate, Norway), Charles Fierz (WSL Institute for Snow and Avalanche Research, Switzerland) and Matthias Huss (Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zurich, Switzerland) for Chapter 3 – Measurement of glaciers.

On behalf of WMO, I would like to express my sincere gratitude to all those whose tremendous efforts have enabled the publication of this new edition.

(Prof. Celeste Saulo)
Secretary-General
CHAPTER 1. GENERAL

1.1 OBSERVATION OF THE CRYOSPHERE

The cryosphere collectively describes components of the Earth system that may very often contain water in its frozen form; it includes solid precipitation, snow, glaciers and ice caps, ice sheets, ice shelves, icebergs, sea ice, lake ice, river ice, permafrost and seasonally frozen ground. Permafrost, however, can be “dry” and therefore the cryosphere also includes any natural material in frozen form. The cryosphere comprises elements that occur on or beneath the Earth’s surface or that are measured at the surface, as in the case of solid precipitation, excluding ice clouds. The cryosphere is global, existing not just in the Arctic, Antarctic and mountain regions, but at various latitudes in approximately one hundred countries. It provides some of the most useful indicators of climate change, yet is one the most under-sampled parts of the Earth system. Improved cryospheric monitoring and integration of such monitoring is essential to fully assess, predict and adapt to climate variability and change.

1.2 OBSERVING SYSTEMS OF THE CRYOSPHERE

WMO, in cooperation with other national and international bodies and organizations, and using its global observing and telecommunication capability, is in a position to provide an integrated, authoritative, continuing assessment of the cryosphere – the Global Cryosphere Watch (GCW). The GCW surface observation network is considered as the cryospheric component of the WMO Integrated Global Observing System (WIGOS), contributing to the Global Climate Observing System (GCOS) and the Global Earth Observation System of Systems (GEOSS). The Global Cryosphere Watch facilitates the establishment of high-latitude and alpine stations with co-located measurements of key variables, especially permafrost and snow cover, thus enhancing GCOS and Global Terrestrial Observing System (GTOS) networks for permafrost, glaciers and hydrology.

1.3 GENERAL SITING AND EXPOSURE REQUIREMENTS FOR A STATION MEASURING CRYOSPHERIC VARIABLES

The characteristics of the measurement site should be captured in the station metadata. Important siting details include, but may not be limited to, surface type (mineral soil or organic layers, vegetation type, ice, etc.), prevailing wind direction, site layout and exposure to both wind and solar radiation. The measurement area should be representative of the surrounding landscape. At alpine stations, measurements on areas with higher exposure than the surrounding landscape should be avoided to guard against unrepresentative measurements.

Finally, siting should take into consideration accessibility and permanence, which will ultimately impact the continuity of the record. For automated measurements, the source of available power and communications may also be a consideration for siting.

1.4 MEASUREMENT STANDARDS AND BEST PRACTICES

To ensure high quality and consistent observations, measurements of cryospheric variables at GCW stations will be made in accordance with accepted standards. Many measurement standards have been compiled by GCW and other networks, though the compilation is not exhaustive for several cryospheric measurements. An initial inventory of existing documents describing measurement practices, or in some cases best practices for processing the observations, can be found on the GCW website.
Some cryosphere networks have their own standards. It will be a major effort for GCW to establish standards in agreement with the existing ones as well as with guidelines for observations of single cryospheric variables, some of which are routinely used. Thus GCW measurement standards will draw on existing ones, for example, those set out in the Guide to Hydrological Practices (WMO-No. 168), Snow cover measurements and areal assessment of precipitation and soil moisture (WMO-No. 749), and the International Classification for Seasonal Snow on the Ground (Fierz et al., 2009), and will add new ones as necessary. They will be reviewed by the scientific community, modified as needed, and maintained in the present Guide, which is the GCW standard document for measurements and best practices related to the cryosphere.

The Global Cryosphere Watch established a list, reproduced below, of required, recommended and desired variables for each component of the cryosphere (Tables 1.1–1.11). Currently, required variables are listed only for meteorological surface measurements at CryoNet stations, therefore, only measurements of recommended cryospheric variables are described in the present Guide. The recommended measurements of cryospheric variables may become required at a later stage.

1.4.1 Snow

There is no global, coordinated monitoring of snow on the ground yet. This is due to the fact that network requirements differ from one application to the next: avalanche warning, meteorological observations, snow, hydrology, and so forth. Guidance on best practices can thus be found in various manuals pertaining to each of these applications, often coinciding. Moreover, best practices that work in an alpine region may not work in extreme conditions such as those found in East Antarctica, where, for example, snow depth is much more difficult to define unequivocally.

Since 1954, there exists an International Classification for Seasonal Snow on the Ground (ICSSG) that covers many but not all aspects of snow monitoring as well as measurements and observations of snow properties. A working group of the International Association of Cryospheric Sciences (IACS) revised the ICSSG which is now available online (Fierz et al., 2009).

However, as the number of regular and continuous manual observations diminishes worldwide, there is an urgent need to improve our ability to measure automatically snow on the ground and to validate those measurements against manual observations. One important step in that direction is the WMO Solid Precipitation Intercomparison Experiment (SPICE). Again, requirements vary depending on the application. While an avalanche forecaster will not be too concerned about an error of ±5 cm in the depth of snowfall, road maintenance may be needed as soon as a road is covered by 1 cm of snow.
Table 1.1. List of required, recommended and desired snow variables

<table>
<thead>
<tr>
<th>Measurement designation</th>
<th>Variable</th>
<th>Timescale</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td>None yet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommended</td>
<td>Snow depth (using stake farms and snow courses)</td>
<td>A (S, G, SI, LRI)</td>
<td>M (S)</td>
<td>M (SI, LRI)</td>
<td>M (G, IS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water equivalent of snow cover</td>
<td>A (S)</td>
<td>M (S)</td>
<td>M (SI, LRI)</td>
<td>M (G, IS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Snow properties (that is density, specific surface area, grain shape and size, hardmess, liquid water content, salinity, chemistry, impurities, mechanical)</td>
<td></td>
<td></td>
<td>M (SI, LRI)</td>
<td>M (IS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Presence of snow on the ground</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M (S)</td>
</tr>
<tr>
<td>Desired</td>
<td>Snow depth</td>
<td>A (IS, P)</td>
<td>M (P)</td>
<td>M (S)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Snow properties</td>
<td></td>
<td></td>
<td>M (SI, LRI)</td>
<td>M (IS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth of snowfall</td>
<td></td>
<td></td>
<td>M (S)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water equivalent of snowfall</td>
<td></td>
<td></td>
<td>M (S)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Snow cover extent</td>
<td>A (SI, LRI)</td>
<td></td>
<td>M (SI, LRI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Snow-surface temperature</td>
<td>A (S, SI)</td>
<td></td>
<td>M (SI, LRI)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Snow temperature</td>
<td>A (S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drifting snow</td>
<td>A (S)</td>
<td></td>
<td>M (S)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key:
- **A:** automatic
- **M:** manual
- **G:** glaciers
- **IS:** ice sheets
- **ISV:** ice shelves
- **LRI:** lake and river ice
- **P:** permafrost
- **S:** snow
- **SI:** sea ice
- **SFG:** seasonally frozen ground

Note:
- * Biweekly
1.4.2 Glaciers and ice caps

The Global Terrestrial Network for Glaciers (GTN-G) is the framework for the internationally coordinated monitoring of glaciers and ice caps in support of the United Nations Framework Convention on Climate Change (UNFCCC). This GCOS/GTOS network is jointly run by the World Glacier Monitoring Service (WGMS) of the International Association of Cryospheric Sciences (IACS), the United States National Snow and Ice Data Center (NSIDC) and the Global Land Ice Measurements from Space initiative (GLIMS).

Beside detailed (index) in situ measurements of mass balance, glacier inventories contain basic information on physiographic properties of glaciers, including glacier boundaries and surface topography. Efforts are also made to compile standardized data on glacier thickness measurements.

In 2015, WGMS designed the Global Glacier Change Bulletin (GGCB) series with the aim of providing an integrative assessment of worldwide and regional glacier changes at two-year intervals. The basic data can be found on the official websites of the above-mentioned organizations.

Table 1.2. List of required, recommended and desired glacier and ice cap variables

<table>
<thead>
<tr>
<th>Measurement designation</th>
<th>Variable</th>
<th>Required</th>
<th>Recommended</th>
<th>Desired</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Measurement designation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Variable</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Timescale</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>hourly</td>
<td>daily</td>
<td>weekly</td>
<td>monthly</td>
</tr>
<tr>
<td>Required</td>
<td>None yet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommended</td>
<td>Surface accumulation (point)</td>
<td>A</td>
<td>M<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surface ablation (point)</td>
<td>A</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surface mass balance (glacierwide)</td>
<td>A</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surface mass balance (point)</td>
<td>A</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glacier area (glacierwide)</td>
<td></td>
<td>M<sup>b</sup></td>
<td></td>
</tr>
<tr>
<td>Desired</td>
<td>Surface accumulation (glacierwide)</td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surface ablation (glacierwide)</td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Basal ablation (point)</td>
<td>A</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glacier thickness (point)</td>
<td></td>
<td>M<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glacier volume (glacierwide)</td>
<td></td>
<td>M<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glacial runoff</td>
<td>A</td>
<td>A/M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Calving flux (point)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ice velocity (point)</td>
<td>A</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ice/ firn temperature profile (point)</td>
<td>A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key:
A: automatic
M: manual

Notes:
^a Seasonal
^b Multi-year
1.4.3 Ice sheets

Table 1.3. List of required, recommended and desired ice sheet variables

<table>
<thead>
<tr>
<th>Measurement designation</th>
<th>Variable</th>
<th>Timescale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>hourly</td>
</tr>
<tr>
<td>Required</td>
<td>None yet</td>
<td></td>
</tr>
<tr>
<td>Recommended</td>
<td>Surface accumulation (point)</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Surface ablation (point)</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Surface mass balance (point)</td>
<td>A</td>
</tr>
<tr>
<td>Desired</td>
<td>Ice sheet thickness (point)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ice velocity (point)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ice/firm temperature profile (point)</td>
<td>A</td>
</tr>
</tbody>
</table>

Key:
A: automatic M: manual

Note:
* Multi-year

1.4.4 Ice shelves

Table 1.4. List of required, recommended and desired ice shelf variables

<table>
<thead>
<tr>
<th>Measurement designation</th>
<th>Variable</th>
<th>Timescale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>hourly</td>
</tr>
<tr>
<td>Required</td>
<td>None yet</td>
<td></td>
</tr>
<tr>
<td>Recommended</td>
<td>Basal ablation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ice velocity</td>
<td>A</td>
</tr>
</tbody>
</table>

Key:
A: automatic M: manual
1.4.5 Icebergs

Icebergs largely occur in the Arctic Ocean and adjacent seas, as far south as Newfoundland and Labrador, and in the Southern Ocean. Iceberg monitoring is a crucial safety issue for travelling and offshore ventures in polar seas, and provides input for climatological analysis, such as assessing mass loss of the glacial ice sheets.

Iceberg monitoring is largely based on remotely-sensed imagery. Nevertheless, iceberg observations form part of several in situ observation programmes, including ship-based observation (see Jacka and Giles, 2007; Romanov et al., 2011).

In situ iceberg observations for both the Arctic and Antarctic include basic observations of the position, size and distribution density, as well as motion, shape and draft.

<table>
<thead>
<tr>
<th>Measurement designation</th>
<th>Variable</th>
<th>Timescale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td>None yet</td>
<td></td>
</tr>
<tr>
<td>Recommended</td>
<td>Iceberg position</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Iceberg form and size</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Iceberg concentration (distance)</td>
<td>M</td>
</tr>
<tr>
<td>Desired</td>
<td>Iceberg motion</td>
<td>A/M</td>
</tr>
<tr>
<td></td>
<td>Iceberg height (above water)</td>
<td>A/M</td>
</tr>
<tr>
<td></td>
<td>Iceberg width and length (at waterline)</td>
<td>A/M</td>
</tr>
<tr>
<td></td>
<td>Iceberg draft</td>
<td>A(^a)</td>
</tr>
<tr>
<td></td>
<td>Underwater 3D form</td>
<td>A(^a)</td>
</tr>
</tbody>
</table>

Key:
A: automatic M: manual

Note:
\(^a\) Biweekly
1.4.6 Sea ice

Sea ice, as well as ice-covered lakes and rivers, and icebergs affect large regions of economic, environmental and social importance.

Information on sea-ice conditions is provided by the national ice services conducting continuous monitoring of sea ice, lake and river ice as well as icebergs. Other bodies involved in this monitoring include the International Ice Patrol as well as the research community on hemispheric, circumpolar and regional scales. For operational purposes many ice properties are displayed as two-dimensional (2D) parameters (polygons) in ice charts. However, it is evident that satellite remote sensing is the primary source of data for sea-ice monitoring, though not all of the key parameters can be observed with sufficient accuracy by space-borne measurement devices. In situ, coastal, shipborne and airborne measurements are a vital complementary, and sometimes primary, source of information. These initiatives, especially shipborne and airborne measurement, are largely taken in support of scientific research. Standard observation procedures (such as the Antarctic Sea ice Processes and Climate (ASPeCt) sea-ice observation protocol and the Arctic Shipborne Sea Ice Standardization Tool (ASSIST)) have proven crucial to the successful uptake of the data. Recently, efforts have been initiated to unify the Antarctic and Arctic observing protocols.

Table 1.6. List of required, recommended and desired sea-ice variables

<table>
<thead>
<tr>
<th>Measurement designation</th>
<th>Variable</th>
<th>Timescale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>hourly</td>
</tr>
<tr>
<td>Required</td>
<td>None yet</td>
<td></td>
</tr>
<tr>
<td>Recommended</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Sea-ice thickness</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Sea-ice freeboard</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Sea-ice melting stage</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Sea-ice class (pack or fast ice)</td>
<td>M</td>
</tr>
<tr>
<td>Recommended</td>
<td></td>
<td></td>
</tr>
<tr>
<td>– applicable for pack ice</td>
<td>Sea-ice type (level/rafted/ridged and floe descriptor)</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Form of ice (floe size)</td>
<td>M</td>
</tr>
<tr>
<td>Desired</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Sea-ice openings (leads, polynyas, cracks)</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Sea-ice velocity</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Sea-ice deformation (divergence/convergence)</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Sea-ice ridge cover (concentration and height of ice ridges)</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Sea-ice draft</td>
<td>M*</td>
</tr>
<tr>
<td></td>
<td>Sea-ice salinity profile (vertical)</td>
<td>M*</td>
</tr>
<tr>
<td></td>
<td>Sea-ice stratigraphy</td>
<td>M*</td>
</tr>
<tr>
<td></td>
<td>Surface temperature (surface-air interface)</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Sea-ice temperature profile (vertical)</td>
<td>A</td>
</tr>
<tr>
<td>Satellite-based (non in situ)</td>
<td>Sea-ice concentration</td>
<td>A/M</td>
</tr>
</tbody>
</table>

Key:
A: automatic
M: manual

Note:
* Biweekly
1.4.7 Lake ice

Table 1.7. List of required, recommended and desired lake-ice variables

<table>
<thead>
<tr>
<th>Measurement designation</th>
<th>Variable</th>
<th>Timescale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>hourly</td>
</tr>
<tr>
<td>Required</td>
<td>None yet</td>
<td></td>
</tr>
<tr>
<td>Recommended</td>
<td>Ice thickness</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Ice concentration</td>
<td>A/M</td>
</tr>
<tr>
<td></td>
<td>Ice class (pack or fast ice)</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Ice type (level/rafted/ridged and floe descriptor)</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Form of ice (floe size)</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Stage of ice development</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Ice phenomena dates of freeze-up, fast-ice formation/breakout, melt onset, break-up)</td>
<td>A/M</td>
</tr>
<tr>
<td></td>
<td>Ice melting stage</td>
<td>M</td>
</tr>
<tr>
<td>Desired</td>
<td>Areal extent of floating/grounded ice</td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Ice-surface temperature</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Ice openings (leads, polynyas, cracks)</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Ice velocity</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Ice deformation (divergence/convergence)</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Ice ridge height</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Ice ridge cover (concentration of ice ridges)</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Ice stratigraphy</td>
<td>M(^a)</td>
</tr>
<tr>
<td></td>
<td>Ice temperature profile (vertical)</td>
<td>A</td>
</tr>
</tbody>
</table>

Key:
- A: automatic
- M: manual

Note:
- \(^a\) Biweekly
1.4.8 River ice

Table 1.8. List of required, recommended and desired river-ice variables

<table>
<thead>
<tr>
<th>Measurement designation</th>
<th>Variable</th>
<th>Timescale</th>
<th>hourly</th>
<th>daily</th>
<th>weekly</th>
<th>monthly</th>
<th>yearly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Required</td>
<td>None yet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommended</td>
<td>Ice thickness</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M*</td>
</tr>
<tr>
<td></td>
<td>Ice concentration</td>
<td>A/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ice class (pack or fast ice)</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ice type (level/rafted/ridged and floe descriptor)</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Form of ice (floe size)</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stage of ice development</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ice phenomena (dates of freeze-up, fast-ice formation/breakout, melt onset, break-up)</td>
<td>A/M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ice melting stage</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>River-ice jams and dams</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flooding extent caused by jams and dams</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>River icings (Aufeis)</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maximum level</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desired</td>
<td>Areal extent of floating/grounded ice</td>
<td>M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ice-surface temperature</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ice openings (leads, polynyas, cracks)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ice deformation (divergence/convergence)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Ice ridge height</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Ice ridge cover (concentration of ice ridges)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td></td>
<td>Ice stratigraphy</td>
<td>M*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ice temperature profile (vertical)</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M*</td>
</tr>
</tbody>
</table>

Key:
- A: automatic
- M: manual

Note:
- * Biweekly
1.4.9 Permafrost

Changes in permafrost temperature frequently reflect changes in surface climate over time, and therefore serve as a useful indicator of climate change. The Global Terrestrial Network for Permafrost (GTN-P) was set up by the International Permafrost Association (IPA) to organize and manage a global network of permafrost observatories for detecting, monitoring and predicting climate change. Existing local networks focus on monitoring the key thermal state parameters (TSP, ground temperature) and active layer depth. The Global Terrestrial Network for Permafrost provides access to these data. In addition, global monitoring of permafrost extent is required (see GCOS Implementation Plan (WMO, 2016)).

Table 1.9. List of required, recommended and desired permafrost variables

<table>
<thead>
<tr>
<th>Measurement designation</th>
<th>Variable</th>
<th>Timescale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Variable</td>
<td>hourly</td>
</tr>
<tr>
<td>Required</td>
<td>None yet</td>
<td></td>
</tr>
<tr>
<td>Recommended</td>
<td>Ground temperature</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Active layer thickness</td>
<td>A</td>
</tr>
<tr>
<td>Desired</td>
<td>Rock glacier creep velocity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock glacier discharge</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock glacier spring temperature</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seasonal frost heave/subsidence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Surface elevation change</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ground-ice volume</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Coastal retreat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Soil moisture</td>
<td>A</td>
</tr>
</tbody>
</table>

Key:
A: automatic M: manual

Notes:
* Half-yearly
* Multi-year

1.4.10 Seasonally frozen ground

Table 1.10. List of required, recommended and desired variables of seasonally frozen ground

<table>
<thead>
<tr>
<th>Measurement designation</th>
<th>Variable</th>
<th>Timescale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Variable</td>
<td>hourly</td>
</tr>
<tr>
<td>Required</td>
<td>None yet</td>
<td></td>
</tr>
<tr>
<td>Recommended</td>
<td>Ground temperature</td>
<td>A</td>
</tr>
</tbody>
</table>

Key:
A: automatic
1.4.11 **Surface meteorology (at CryoNet stations)**

<table>
<thead>
<tr>
<th>Measurement designation</th>
<th>Variable</th>
<th>Timescale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>hourly</td>
</tr>
<tr>
<td>Required</td>
<td>Air temperature</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Air humidity</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Wind speed</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Wind direction</td>
<td>A</td>
</tr>
<tr>
<td>Recommended</td>
<td>Air pressure</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Incoming short-wave radiation</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Reflected short-wave radiation</td>
<td>A</td>
</tr>
<tr>
<td>Desired</td>
<td>Incoming long-wave radiation</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Outgoing long-wave radiation</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Precipitation</td>
<td>A</td>
</tr>
</tbody>
</table>

Key:
A: automatic

1.5 **UNCERTAINTY OF MEASUREMENTS**

Establishing best practices, guidelines and standards for cryospheric measurements entails consideration of data uncertainty, homogeneity and interoperability, and compatibility of observations from all GCW constituent observing and monitoring systems and of derived cryospheric products.

Additionally, instrument intercomparison campaigns will regularly be conducted to determine and compare performance characteristics of instruments under field conditions and to link readings of different instruments.
REFERENCES AND FURTHER READING

Romanov, Y. A.; Romanova, N. A.; Romanov, P. Shape and Size of Antarctic Icebergs Derived from Ship Observation Data. *Antarctic Science* 2012, 24 (1), 77–87. https://doi.org/10.1017/S0954102011000538.

CHAPTER 2. MEASUREMENT OF SNOW

2.1 GENERAL

This chapter describes some of the most common snow measurement methods, provides guidance on the procedures and best practices for setting up a snow monitoring network, and indicates the common sources of error in measuring snow on the ground (where “ground” or “base surface” could refer to any reference surface below the top of the snow cover, for example, soil, glacier and sea ice). The information provided is for both manual and automated measurements (where applicable), with the exception of measurement of precipitation, which is described as a meteorological variable in Volume I, Chapter 6 of this Guide. Snow measurements included here are snow depth \((HS, \text{for height of snow})\), snow thickness \((DS)\), water equivalent of snow cover \((SWE)\), depth of snowfall \((HN, \text{for height of new snow})\), presence of snow on the ground \((PSG)\).

2.1.1 Definitions, units and scales

The snow cover is, in general, the accumulation of snow on the base surface, and in particular, the areal extent of snow-covered ground (NSIDC, 2018); this term should be used in conjunction with the climatologic relevance of snow on the ground. For the definition of shallow versus deep snow cover in this chapter, we define shallow snow cover as having a depth of 50 cm or less.

The snowpack is the accumulation of snow at a given site and time; this term should be used in conjunction with the physical and mechanical properties of snow on the ground.

The base surface is taken as the interface at the bottom of the snow cover or snowpack: it is the ground surface in case of soil, or the surface of another component of the cryosphere such as the surface of sea ice. On glaciers, it is either the ice surface within the ablation zone or the previous year’s hardened summer surface in the accumulation zone (see the present Guide, Volume II, Chapter 3, 3.7.1).

A snow layer results from intermittent precipitation, the action of wind and the continuous metamorphism of snow. Distinct layers of snow build up the snowpack and each such stratigraphic layer differs from the adjacent layers above and below in at least one of the following characteristics: microstructure or density, which together define the snow type; snow hardness; liquid water content; salinity; chemistry; isotopic content; or impurities, which all describe the state of this type of snow. Thus, at any one time, the type and state of the snow forming a layer have to be defined because its physical, chemical and mechanical properties depend on them (Fierz et al., 2009). It should be borne in mind that a snow layer cannot be classified with a single parameter such as grain shape.

Snow depth \((HS)\) is defined as the vertical distance from the snow surface to a stated reference level and must be reported in centimetres (cm), rounded to the nearest centimetre. In most cases the reference level corresponds to the base surface; on ice sheets it may refer to a depth recorded at some fixed time. Snow thickness \((DS)\) – the perpendicular distance from the snow surface to a stated reference level – is related to \(HS\) through the slope angle \(\varphi\) as follows:

\[
DS = HS \cdot (\cos \varphi) \tag{2.1}
\]

The slope angle is the acute angle measured from the horizontal plane of the slope (see Figure 2.1). Conversely, \(HS\) can be calculated from \(DS\) as follows:

\[
HS = DS \cdot (\cos \varphi)^{-1} \tag{2.2}
\]

Unless otherwise specified, a snow-depth measurement refers to a measurement at a single location at a given time.
Water equivalent of snow cover \((SWE)\) is the vertical depth of water that would be obtained if the snow cover melted completely, which equates to the snow-cover mass per unit area. It is expressed either in mm w.e. or in kg m\(^{-2}\), where the addition of w.e. to the length unit is strongly recommended. Water equivalent of snow cover is the product of the snow height in metres and the depth-averaged bulk density of the snow cover in kilograms per cubic metre (Goodison et al., 1981, p. 224). It can represent the snow cover over a given region or a confined snow sample in a specific area. The reported resolution of \(SWE\) is to be 1 mm w.e. or 1 kg m\(^{-2}\).

Snow properties define the physical, mechanical and chemical properties of a snow layer (see 2.1.1 above for the definition of snow layer). These can include density, grain size and shape, hardness, liquid water content, salinity, impurity and isotopic content. Snow properties are traditionally observed layer by layer. Some modern instruments, however, already record continuous profiles of many snow properties.

Depth of snowfall \((HN)\) is the vertical depth in centimetres of freshly fallen snow that has accumulated on the base surface or on a snow board during a specific period, usually of 24 hours. When reporting \(HN\) for observation periods other than for 24 hours, the period must be added in parentheses to the symbol (for example, an 8-hour measurement will be expressed as \(HN(8h)\)). The depth of snowfall is reported in centimetres and rounded to the nearest centimetre. As with \(HS\), the perpendicular measurement of snowfall, \(DN\), is related to \(HN\) via the slope angle \(\varphi\).

Presence of snow on the ground \((PSG)\) is a binary observation of the presence of snow cover at the measurement location. The measurement location is of the scale of the instrument compound and is generally about 50 m x 50 m but not less than 10 m x 10 m.

2.2 SITING AND EXPOSURE

The characteristics of the measurement site should be captured in the station metadata. Important siting details for snow measurements to be listed in the metadata include, but may not be limited to, slope, aspect, surface type (mineral soil or organic layers, vegetation type, ice, etc.), prevailing wind direction, site layout and exposure (including distance to surrounding wind barriers). Generally, the ideal site for measuring snow is a flat, wind-sheltered area, where the snow cover and the base surface are relatively homogenous. However, the measurement area should be representative of the surrounding landscape. For example, if the surrounding landscape is open (such as a flat plain with no significant barriers to wind) \(HS\) or \(SWE\)
measurements should not be made inside an unrepresentative sheltered area. The exception to this is the measurement of the depth of snowfall which should, if possible, be made in a sheltered location to minimize the impact of wind. For forested sites, a measurement location within a clearing is preferred. In alpine regions, a flat area large enough to make a representative measurement without encountering edge effects should be chosen, while basins, slopes and ridges should be avoided. Alpine sites in particular should be sheltered from the prevailing wind and clear of large rocks. At alpine stations, measurements in areas with higher exposure than the surrounding landscape should be avoided, as the exposure may cause unrepresentative seasonal melting rates and yield unrepresentative measurements.

For the manual point measurement of HS or SWE, a measurement field should be established prior to the snow season. An optimal field is a 10 m x 10 m area that can remain relatively undisturbed over the course of the winter (that is, sufficiently distant from walking paths or instruments that may require servicing over the winter, so that instrument servicing will not affect the snow measurement area). Prior knowledge of the snow-depth distribution in the measurement area helps in choosing spatially representative point measurements. Caution is required so that obstructions or variability in exposure do not result in preferential accumulation or scouring due to drifting snow or in preferential melt due to exposure. Measurements should be carried out away from obstacles, at a distance at least twice the obstacle height, but a site assessment is required to ensure that this spacing is adequate, taking into consideration exposure (and shading) and dominant wind direction during the winter season.

Siting considerations for an automated HS or SWE instrument should be the same as for the siting of a point measurement, even though the measurement principle of automated SWE instruments provides more spatial integration. It is recognized that for automated instruments it might be difficult to arrange that the distance between the instrument and an obstacle is at least twice the height of the obstacle, due to the proximity of the instrument mounting structure, so exceptions need to be made. As with HS, unless the measurement area is very homogenous, the point SWE measurement will likely not be representative of the surrounding landscape. Consequently, an extensive survey of HS and SWE is recommended at least once per season (see 2.3.1.2 and 2.4.1.2), timed to coincide with maximum accumulation, to assess the spatial representativeness of the point measurement. Since the spatial variability in the bulk density of the snow cover is generally much lower than the snow cover depth (Dickinson and Whitely, 1972), the variability can often be assessed with a HS survey alone.

The measurement of HN should be carried out where the new snow falling on the measurement area is representative of the surrounding area. This is best done in a sheltered location where wind effects will be minimal and where the snow is allowed to fall undisturbed. As with the measurement of precipitation, the surrounding obstacles should be at a sufficient distance (roughly twice the height of the obstacle) so as not to interfere with the measurement.

Fixed snow-depth transects, also known as stake farms, should be sited, using the same criteria as point measurements, at a sufficient distance from instruments, obstructions and walking paths to minimize disturbance, without jeopardizing the observer’s ability to read the stakes. The transect will necessarily be closer to the path that the observer will use to make the measurements, while avoiding disturbance of the measurement area as much as possible.

Finally, siting should take into consideration accessibility and permanence, which will ultimately affect the continuity of the record. For automated measurements, the source of available power and communications may also be a consideration for siting.
2.3 SNOW DEPTH

2.3.1 Manual measurements of snow depth

2.3.1.1 Measurement techniques

Graduated devices

Manual HS measurements are made with a sturdy ruler, stake (see Figure 2.2, left and centre) or extendible graduated rod (see Figure 2.2, right). Measurements may consist of an observation at a single point, or of many points in a transect. Unlike a point measurement, the observation of multiple snow depths in a transect enables the observer to assess the spatial variability at the observation site. The measurement instrument can be permanently fixed to the ground (stake) or manually inserted at the observation point (rod) before each measurement.

Snow-depth measurements at remote sites with deep snow cover can be made using vertical snow stakes with horizontal cross arms at fixed intervals, which can be viewed from long distances (see Figure 2.3).

Photometry

At unstaffed sites, a viable alternative to visually observed snow stakes is scheduled automated photometry (for example, a web camera) which allows the snow stakes to be photographed and the snow depth manually interpreted from the images (see Figure 2.4). Snow depths can either be retrieved in real time or later from the saved images.

Figure 2.2. Graduated snow stakes in deep alpine snow cover (left, Pyrenees, Spain; photo courtesy of the Spanish State Meteorological Agency) and in shallow snow cover (centre, southern Ontario, Canada; photo courtesy of Environment and Climate Change Canada (ECCC)). An extendable 1 cm graduated snow rod (right, photo courtesy of ECCC)
Figure 2.3. Vertical snow stake with horizontal cross arms (left, photo courtesy of the WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland) and colour coded bands (right, photo courtesy of the Spanish State Meteorological Agency)

Figure 2.4. A snow stake photographed by a web camera at an elevated grazing angle to the stake (Sodankylä, Finland, photo courtesy of the Finnish Meteorological Institute)
Electronic probe

Another option, especially for surveys in shallow snow cover, is the use of a recording snow-depth probe equipped with a GNSS antenna (see Figure 2.5; Sturm and Holmgren, 2018). The probe is manually inserted into the snowpack until it contacts the base surface, and the snow depth is then electronically measured and stored for subsequent data retrieval and analysis.

Ground penetrating radar

Ground penetrating radars (GPRs) are used to determine snow depth at a point or over large distances and along gridded snow courses. In general, a lightweight sled containing the instrumentation is pulled over the snow cover (Lundberg et al., 2010; Griessinger et al., 2018). It is also becoming common practice on glaciers and the method is further detailed in the present Guide, Volume II, Chapter 3, 3.7.1. The data analysis for GPR can be either done manually or automated.
2.3.1.2 Measurement procedures and best practices

Measurement device

The measurement device for manual HS measurement should be a graduated stake (fixed measurement) or a graduated ruler or rod (non-fixed measurement) with the graduation in centimetres. The choice of measurement device may depend both on the permanency of the installation and on the nature of the snowpack being measured. Regardless of permanency, the location of the measurement should be the same for each measurement, as outlined below.

For permanent (fixed) or semi-permanent (that is seasonally fixed) point installations, the recommended measurement device is a fixed snow stake (see Figure 2.2, left) with highly visible graduations such that it can be read at a distance. The snow stake should be vertical and firmly anchored to the ground in concrete or with pegs. If the installation is seasonal, it is important that the stake is placed at the exact same location each year. Use of Differential Global Positioning Systems (DGPSs) is preferred; otherwise, orientation with landmarks is the next option. The material of the stake should have a relatively low thermal conductivity and low heat-storage capacity (such as wood or fiberglass) and painted white (high albedo) to minimize melting around the stake. If the stake is to be photographed in low-light conditions, graduations in reflective material may increase visibility. Low-light photography of a snow stake may require specialized camera equipment with infrared capability or an external light source (for example LED) to improve the quality of the photographs. The angle between the camera and the snow stake should be as low as practical to minimize interpretation of the snow line against the stake. Attention should be paid to the orientation of the camera with respect to direct sunlight and shadowing.

For manual HS measurements, where permanent stakes are not installed (that is non-fixed), a ruler (for example, an aluminium or wooden metre stick) can be inserted into the snowpack down to the ground surface. For measuring deep and/or dense snowpacks or snowpacks with ice layers, the use of a snow rod is recommended such that it can be rammed through the snow until the pointed end comes into contact with the surface, with the rod extensions added as required for deep snowpacks. A rod, unlike a ruler, will not flex when inserted into deep or dense snow cover.

For spatially distributed HS measurements, the length and number of stakes in the transect line will be determined by the snow variability at the study site. Generally, a transect line will consist of 5 to 10 stakes installed 5 to 10 metres apart. According to Neumann et al. (2006), the minimum length of a transect can be determined by assessing the change in the coefficient of variation (CV) with increasing transect length, where CV is defined as the ratio of the standard deviation to the sample mean expressed as a percentage. A constant CV indicates that the transect line has captured the local variability. López-Moreno et al. (2011) indicate that for plot size measurements (that is 10 m x 10 m) the error can be minimized by obtaining 5 to 10 samples with measurement spacing of at least 2 m.

Measurement protocols

Snow stakes are to be observed from a sufficient distance so as not to disturb the snow near the stake. Observations are to be made parallel to the snow surface. This can be accomplished with the observer viewing the graduations on the stake from a vantage point close to the surface of the snowpack. It is recommended that the observations be made from approximately the same observation point each time, especially if there is more than one observer. This observation point should be identified prior to the measurement season. Some interpolation by the observer may be required when there is a mound, a well or an uneven distribution of snow around the snow stake at the time of observation, so that a mean HS across the face of the snow stake is reported (see Figure 2.6). Snow depth, stake number (if more than one) and time of observation should be recorded along with any relevant present weather information such as the occurrence and intensity of precipitation during the observation. If multiple stakes in a transect line are averaged,
the reported average should be rounded to the nearest centimetre. If more than 50% of the measurement field is bare (see 2.7), a snow height of 0 cm is entered into the logbook, even if there is still some snow at the stake itself.

For a non-fixed snow-depth observation, the same principles as above apply. The observation should be made in the same location each time, bearing in mind that some adjustment in the location may be required to sample undisturbed snow. The observer should walk on the same path for each observation, reaching as far as possible off of the path to measure undisturbed snow. The ruler or rod is inserted firmly into the snowpack to penetrate any layers of dense snow or ice. The observer must ensure that the device reaches the base surface but caution is required not to penetrate soft soil or organic layers (over-probing) and thus overestimate HS. The observer should have prior knowledge of the nature of the surface below the snow and should use his/her own judgement. On inclined surfaces, the rod (or avalanche probe) should be inserted vertically into the snowpack down to the base surface. A clinometer may be used to ensure that the measurement is made at the correct inclination. The measurement or estimate of the slope angle (φ) should be included in the metadata for the measurement. These techniques also apply to snow-depth transects measured with an electronic probe. Note that an electronic probe will likely have a flat basket (see Figure 2.5) which rests on top of the snow surface during the measurement. The potential for an overestimate exists when the incline is steep and the basket is not flush with the surface. This should be noted in the metadata for the measurement along with an estimate of the error.

Photometry

When snow stakes are observed via photometry, the camera should be at the lowest grazing angle practical from the snow surface near the stake. The observer should use their best judgement to interpret the mean level of the snow against the snow stake, considering the viewing angle. It is recognized that this can be difficult, especially in low-light conditions, increasing the uncertainty of a photometric measurement as compared to a visual measurement. If automated retrieval methods are used, they should be compared extensively to manual retrievals and quality controlled appropriately.

2.3.1.3 Sources of error

Sources of error in manual HS measurements include observer’s errors when reading or recording the measurement, or in finding the base surface with a snow rod (in non-fixed measurements), frost heave of fixed stakes, poor siting and misinterpretation of photographed HS due to the observation angle. Many errors in manual measurements result from misinterpretation of a HS reading or from incorrect entry in a log book. These can be minimized by following measurement procedures. With due care and observer experience, many of these sources of error can be minimized. Errors in measurements of this type can usually be removed through data quality control processes (range and jump checks).
A measurement error can occur when an observer misjudges the location of the base surface with a snow ruler or rod. In deep snowpacks, an observer may mistakenly interpret a deep ice layer as being the base surface since it may be difficult to penetrate with the snow rod; this will result in an underestimate of HS. Alternatively, a soft organic layer will also be difficult to interpret as the base surface, and this will result in over-probing and an overestimate of HS. These errors can be avoided by having prior knowledge of the base surface conditions and through the observer’s experience. They do not occur with fixed snow-depth measurements. The magnitude of such errors, depending on the nature of the snowpack and the base surface, could range from a few centimetres to tens of centimetres.

In fixed transects, errors in HS observations can occur if the frost changes the height of the snow stake relative to the ground, resulting in an underestimate of HS. Generally, such errors will have a magnitude of a few centimetres at most.

Poor siting of a snow-depth measurement (see 2.2), whether using a single stake or a multi-point transect, could result in large errors, the magnitude of which depends on the site mean and variability but could potentially be as high or higher than the mean, with relative errors increasing with decreasing snow depth. A poorly sited snow-depth measurement could result in the stake being located within a snow drift or scoured area. This can be minimized by siting snow stakes in areas where the snow depth is known to be relatively homogenous, usually in sheltered locations. If this is not possible and the observer believes the stake to be non-representative, the observation should be replaced with spatially distributed non-fixed observations, noting this where appropriate in the site metadata.

Errors in interpretation of both visually observed and photographed stakes, especially if the viewing angle is high and the snow around the stake is uneven (mounding, welling or sloping), can be as large as a few centimetres, but such errors can usually be minimized with experience and following best practices for stake observations.

2.3.2 Automated measurements of snow depth

2.3.2.1 Measurement techniques

Automated HS measurements can be made with instruments using either sonic or optical (laser) technology. Both sonic and optical devices measure the distance to a target (that is, the snowpack, the base surface or a target flush with the base surface), rather than the distance from the base surface to the top of the snow cover. Although other automated techniques exist, these two types of instruments are the most widely available and the most commonly used.

Sonic instruments

Sonic instruments transmit an ultrasonic pulse towards the target and listen for a return echo from that target. Correcting for the speed of sound with concurrently measured air temperature, the distance to the target is calculated as follows:

$$\text{Distance to target} = \frac{\text{Instrument reading}}{273.15} \times T_{\text{air}}$$

where T_{air} is measured in kelvin, assuming that the raw instrument reading is correct for the speed of sound at 0 °C.

By subtracting the measured distance to the target from a previously derived distance to the snow-free base surface (zero depth distance), HS can be derived:

$$HS = \text{Zero depth distance} - \text{Distance to target}$$

Sonic instruments usually measure the distance to the highest obstacle within the automated instrument’s response area. The response area is a conical footprint, the radius of which depends on the height of the instrument above the target (see, for example, Figure 2.7).
Optical instruments

An optical or laser instrument emits a modulated beam of light in the visible spectrum and determines the distance to a target by comparing the phase information from the reflected beam. Unlike sonic instruments, the response area of a laser instrument is quite small (<5 mm radius at a distance of 4 m), and the speed of light is not affected by temperature. Optical instruments usually can output a signal strength measurement which can be useful for optically determining the presence of snow beneath the instrument. It is strongly recommended to use a laser beam classified safe for the eyes (maximum power class 2).

2.3.2.2 Measurement procedures and best practices

Choice of automated instruments

The choice between an automated sonic or laser instrument mainly depends on both the requirements for measurement uncertainty and the availability of power. Laser instruments have a higher degree of precision (~0.1 cm) than sonic instruments (~2 cm), but require more power for operation and may not be suitable for measurements at remote sites where power consumption is a concern. Heated sonic or laser instruments should be considered for climates where snow or frost accumulation on the instrument has the potential to impede its function (see Figure 2.11), bearing in mind that such functions require more power. Automated snow-depth instruments should be purchased from a reputable supplier and be proven to work within the manufacturer’s specifications to provide a data uncertainty of not more than ±2 cm, but preferably not more than ±1 cm. Proper installation, use and maintenance as prescribed in this chapter and in the instrument manual will help the instrument to achieve the manufacturer’s specified uncertainty.

Installation height

Automated instruments need to be installed at a sufficient height above the maximum anticipated snowpack. The minimum and maximum height above the target should be checked with the instrument manufacturer. As an example, some sonic instruments require at least a 1 m clearance between the instrument and the target. In some networks, the peak snow depth can vary substantially from station to station, so it is not important that all of the instruments in the network be installed at the same height.
Mounting structure

The mounting structure needs to be solidly built so as to prevent instrument movement (for example, due to wind), while minimizing interference with the accumulation and ablation of snow beneath the instrument. Steel mounting beams and vertical poles secured with concrete are recommended (see Figure 2.8). The mounting arm of a sonic instrument needs to extend the instrument out horizontally from the vertical mounting pole such that the target area is minimally influenced by the mount (see Figure 2.8, left). At locations that receive heavy snowfall in low wind conditions, it is advisable that the horizontal mounting beam be mounted at a 30° to 45° angle (see Figure 2.8, middle) to prevent snow from collecting on the beam, potentially influencing the measurement of snow depth in the target area. Laser instruments need to be mounted at an angle (for example 10° to 20°) large enough so that the targeted point is sufficiently distant from the mounting structure to minimize interference from the vertical mounting pole (see Figure 2.8, right).

In alpine regions, where the instrument is necessarily installed at greater height above the ground, the structure may have to be more substantial to solidly support the instrument and prevent vibrations due to wind. An example of this structure is shown in Figure 2.9. Note that the response area of the instrument also increases with the instrument’s distance from the target (see Figure 2.7).

Surface target

It is recommended that snow depth be measured on a level surface but, if this is not possible due to sloping terrain, the measurement should be made perpendicular to the sloping surface such that the instrument measures DS rather than HS. For sonic instruments, this is done by adjusting the angle of the instrument mount so that the instrument itself is perpendicular to the surface. Since laser instruments point towards a target at an angle, the depth of snow on a sloping surface can be calculated geometrically (see 2.1.1).

Surface preparation prior to snowfall is required to minimize instrument noise and erroneous data due to interference from surface vegetation or other obstacles within the response area of the instrument. An adequately prepared target area will increase the instrument’s capability to detect the first accumulations of snow occurring on the bare surface. Because sonic instruments have a much larger response area than laser instruments, surface preparation is generally more

![Figure 2.8. Automated sonic snow-depth instrument with steel mounting beam and pole secured with concrete (left), angled mounting beam to reduce collection of snow (middle), and laser instrument mounted at an angle away from the vertical mounting pole (right) (Sodankylä, Finland, photos courtesy of the Finnish Meteorological Institute).]
important. Sonic instruments require a stable, flat surface for the clean reflection of the sonic pulse, keeping in mind that the sonic measurement will usually be made from the tallest obstacle in the response area.

A high-quality measurement can be achieved by either siting the instrument over closely mown grass (or an otherwise flat and bare natural surface, such as under the instrument in Figure 2.9) or by using an artificial target similar to that shown in Figure 2.8, made of artificial turf. An acceptable maintenance-free option is the use of a plastic surface such as the perforated and textured target construction shown in Figure 2.10, which has been shown to have thermal properties similar to natural ground. It is advantageous if the artificial target has optical properties (which could impact the radiation budget) and texture (which could influence snow deposition or scouring) similar to the natural surroundings.

It is recommended that the zero snow-depth distance between the instrument and the surface be verified prior to, and immediately following an accumulation season to determine the instrument offset before accumulation and to check whether this offset has changed over the course of the season. The relative distance between the instrument and the target may change due to settling (positive change in relative distance) or frost heaving (negative change in the relative distance) and will impact the calculated H_S in equation 2.4. Changes in the zero snow-depth distance between the beginning and the end of the winter season should be noted in the site metadata as these changes affect the measurement uncertainty. Small changes in the zero snow-depth distance during the measurement season will reduce the measurement reliability for shallow snow depths (for example, 0 to 2 cm) which requires the relative distance between the instrument and the target to remain unchanged under all conditions.

Figure 2.9. Sonic snow-depth instrument (Spanish Pyrenees, photo courtesy of the Spanish State Meteorological Agency)
Minimizing vegetation and vegetation growth in the target area will prevent misinterpretation of growing vegetation as a change in snow depth and will, therefore, improve data quality. This is more significant in regions where snow depth is shallow or ephemeral and the uncertainty of the shallow measurements is more important.

Data quality control

The quality of data from automated instruments can be improved through frequent (for example, more than once per minute) measurements over a period of time short enough not to incur significant changes in HS (for example, 5 minutes), with the value reported for the period being the median of those high-frequency measurements. This reduces the impact of signal noise on the reported value. In addition to this, other quality control procedures are advisable. These should include a maximum and minimum (site specific) range check for HS measurement, where the maximum value should be ~20% higher than the maximum expected HS and the minimum value should be 0 minus 2x the manufacturer’s stated instrument uncertainty. A minimum range check value of less than 0 allows for variability in the zero snow-depth distance to be around the instrument’s stated uncertainty without flagging the data as out of range. A step change check should also be used to ensure that changes in HS from one measurement to the next are within a physically realistic range for the site. Note that the zero depth distance should be verified at the end of each winter and the offset adjusted if necessary. Drift in the zero depth distance, caused by relative changes in height of the target surface and the instrument, is a source of measurement uncertainty. If the timing and magnitude of the drift can be identified, the observation can easily be adjusted, but often zero depth distance drift will be a non-linear process occurring between the start and end of the snow season, making the data difficult to adjust. Change in the zero depth distance should be noted in the metadata.
2.3.2.3 **Sources of error**

The sources of error in automated snow-depth measurements include instrument malfunction, inadequate or improperly installed mounting structure, zero depth drift, incorrect sonic temperature correction, accumulation of frost or snow on the instrument hindering the measurement, and inconsistencies in the target area due to rapid melt or rain.

For automated point measurements, inconsistencies under the instrument can be minimized by an artificial surface target, especially during the season of active vegetation growth and at the beginning of the accumulation period. Inconsistencies due to rapid melt (that is, large variations in depth across the target area, especially in deep snow covers) are difficult to prevent or correct, but they can be identified through the use of daily photometry of the target area.

Instrument malfunctions can be minimized through proper and routine maintenance as suggested by the manufacturer. Instrument failures can also be a result of power supply, wiring, or data logger (operation or programming) issues.

Improper instrument installation could lead to unwanted motion during windy conditions resulting in erroneous or uncertain measurements due to changes in the relative distance between the instrument and the surface target.

Zero snow-depth drift could potentially produce small but incremental errors in measured HS that are difficult to assess or to adjust during the winter season. This impact should be assessed annually at the end of each seasonal ablation, and the zero snow-depth distance should be updated before the beginning of the next accumulation season. If an artificial target is used, settling is most likely to occur during the first accumulation season (due to the disturbed ground followed by the weight of the snowpack on the target) although frost heave of the target could occur during any winter season. An incorrect zero depth offset in the instrument, data logger or during post-processing will result in the reporting of erroneous snow depths.

Potentially large errors can result from erroneous air temperature measurements when used for correcting sonic distances. This may be due to a faulty instrument or may be the result of radiative heating of unshielded or poorly shielded temperature instruments. Good radiation shields (for example, a white reflective construction with well-ventilated louvers to allow air to pass freely through) along with quality assurance of the temperature data used for the sonic correction can minimize these errors. If possible, the temperature measurements should be made in the aspirated radiation shield to reduce radiation errors. Generally, errors associated with the height of the instrument in relation to the temperature profile between the instrument and the target are small, even with the temperature instrument installed at the same height as the snow-depth instrument rather than closer to the average distance to the target.

Lastly, errors in automated HS measurements could result from the accumulation of frost or snow on the instrument (see Figure 2.11). Some instruments have heating capability to minimize this problem and should be used where required. Heating of the mounting beams with heat tape and the use of angled mounting beams (see Figure 2.8, middle) may also help prevent snow and frost build-up around the instrument.

2.4 **WATER EQUIVALENT OF SNOW COVER**

2.4.1 **Manual measurements of water equivalent of snow cover**

2.4.1.1 **Measurement techniques**

There is a large variety of manual measurement techniques for SWE. Measurement techniques will vary depending on snowpack depth and conditions. The following sections try to capture those techniques and some of the factors that determine them. Only direct measurement methods are presented. Active or passive radiative absorption methods are excluded here as many of these techniques have been automated and are discussed in subsequent sections.
CHAPTER 2. MEASUREMENT OF SNOW

Generally, all direct measurement techniques involve a gravimetric snow sampler which collects a known (or calculable) volume of snow from which the snow density can be derived. Techniques range from the use of a small volumetric sampler (for example, 1 000 cm3) in a snow pit (see Figure 2.12, left) to a 10-point snow course using a snow tube (see Figure 2.12, right). There is a large variety of volumetric samplers and snow tubes in use and their choice largely depends on the nature of the snowpack being sampled. Many of these samplers are listed and discussed in Farnes et al. (1983) and Haberkorn (2019), while only a few are discussed in this chapter in the context of measuring various snowpack regimes. On glaciers, coring augers are widely used to measure SWE. For details on using coring augers see the present Guide, Volume II, Chapter 3, 3.7.1.

There is not a standard volumetric sampler for making SWE measurements; some samplers work better in certain snow conditions than others. These are described further in 2.4.1.2. The discussion here focuses on two general SWE measurement techniques: snow pits and snow courses, with their respective advantages and disadvantages.

SWE measurements in snow pits

Snow pits (see Figure 2.13) involve manually digging a hole in the snowpack down to the reference surface such that an undisturbed face of the snowpack is exposed. Snow pits are a useful technique for observing the stratigraphy of the snow, especially for deeper snowpacks. These gravimetric observations of SWE are generally performed weekly, biweekly or seasonally, depending on their purpose. The measurement technique is destructive in that a large pit is usually necessary, so it must be dug in a different location each time. A sampler of a known volume (typically 10^{-4} to 10^{-3} m3) is inserted into the snow and a sample of a known thickness L (m) is extracted (either of each snow layer or layer thickness independent) and weighed (see Figure 2.12, left). Snow density ρ_s of the sample (kg m$^{-3}$) is then obtained as:

$$\rho_s = \frac{m_{\text{sample}}}{V_{\text{sample}}}$$

(2.5)

Figure 2.11. Unheated snow-depth instrument and mounting structure collecting snow in a low wind environment (photo courtesy of the Finnish Meteorological Institute)
where m_{sample} is the mass of the sample (kg) and V_{sample} is the sample volume (m3) which often corresponds to the volume of the sampler. The water equivalent WE of the sample is then determined by:

$$WE = L \cdot \rho_s$$

(2.6)

Taking several samples seamlessly from the snow surface down to the reference surface, SWE will then be the sum of the water equivalent of each sample.

SWE measurements on snow courses

Observation of SWE on a snow course is generally carried out with a tube snow sampler (see Figure 2.12, right) in a multi-point transect, usually consisting of 5 to 10 measurement locations spaced 30 m apart. There is a variety of snow tubes but the sampling principles are much the same. The snow tube is inserted into the snowpack (see Figure 2.14) to the ground surface, using tube extensions where required, and a snow core is extracted. The volume of that core is calculated from the depth of the core in the tube, knowing the sampler radius. The sample is then either weighed with a snow-tube cradle and spring balance or bagged and weighed with a scale. Some spring balances are calibrated to directly provide the SWE measurement in mm w.e. or kg m$^{-2}$ (after subtracting the weight of the tube), or density can be calculated manually as follows:

$$\rho_s = \frac{m_{\text{sample}}}{\left(\pi R^2 \cdot L\right)}$$

(2.7)

where R is the inside radius of the snow-tube cutter (m), L is the depth of the snow sample measured with the snow tube (m), and m_{sample} is the mass of the sample (kg) with the weight of the tube or the sample bag (if the sample is collected in a bag rather than weighed in the tube) removed.
SWE is then calculated according to:

\[SWE = L \cdot \rho_x \] \hspace{1cm} (2.8)

The advantage of snow-course sampling over snow-pit sampling is in the relative speed of the snow-tube sampling technique and the minimal disturbance of the snowpack allowing for repeated measurements very close to each other over the course of the winter season. The disadvantage as compared to snow pits is the inability of the observer to determine whether the snow sample is being collected intact, especially in complex snow covers with non-cohesive layers or ice lenses. Some of these difficulties are discussed in 2.4.1.2.

On a snow course, a technique called double sampling is usually employed, where multiple snow depths (usually 10 to 15, depending on the snow cover variability) are obtained using a ruler or rod between SWE samples (see 2.3). The areal SWE is then calculated with equation 2.8, using the average density from the 5 or 10 snow-tube samples and the average HS measured with the ruler or rod. This technique has been shown to improve the areal estimation of SWE and to reduce the variance of the measurement, in comparison with SWE sampling in the snow course without multiple HS measurements (Rovansek et al., 1993), provided that the snow depths are obtained with minimal error.

2.4.1.2 Measurement procedures and best practices

Measurement techniques and devices

The two options for manually sampling SWE are a snow course with a snow tube sampler, and a snow pit with integration of small volumetric samples. A snow course and snow tube should be used where SWE is less spatially homogenous, hence the need for increased spatial sampling. A snow course and snow tube will, therefore, create less disturbance of the snow cover and enable faster multi-point sampling. Site variability can be estimated using a snow-depth transect, as discussed in 2.3.1.2; a coefficient of variation greater than 10% would suggest the need for multiple point samples on a snow course rather than a snow pit. The disadvantage of a snow
course with a snow tube sampler is increased uncertainty in the measurement. Where the snow cover is more homogenous, a single snow pit can be used to assess SWE by integrating multiple small volumetric samples from the surface of the snow to the surface of the ground. These are more labour intensive and require more time and disturbance of the snowpack but are generally more accurate. The measurement protocols are detailed below.

Measurement protocols for snow pits

Manual SWE measurements are often conducted by measuring the density of the snowpack in incremental steps, starting at the surface of the snow in the snow pit and continuing until the base has been reached. The procedure requires a graduated cylinder, a spring scale, a sharpened thin metal plate (approximately 20 cm x 20 cm) and a tool such as a crystal card, scraper or spatula to cut out the samples from the surrounding snow. The maximum height of a layer is determined by the length of the cylinder. A conceptual diagram of the process is shown in Figure 2.15.
Choosing a snow pit location:

(a) A snow pit should be in a flat location where the pit can be excavated without disturbing other measurements at the site;

(b) Depending on the frequency of pit measurements, more room may be required for future pit excavations, so keep this in mind when locating the first and subsequent pits;

(c) Choose a location for the snow pits before snow accumulation starts so that the base surface is clear of rocks or other debris.

Making the measurements:

(a) At the location chosen for the snow pit measurement, dig a pit to expose the face of the snow pack that does not incur direct sunlight. This will help to prevent the face from warming in the sun and will help to avoid snow sticking in the sampler;

(b) The samples for the measurement of SWE are taken vertically and continuously starting from the surface of the snowpack. Insert the metal plate horizontally into the exposed face at a depth slightly less than the cylinder length;

(c) Insert the cylinder, which should have sharpened edges at one end, vertically down to the plate and record the corresponding sample height as shown on the graduations on the cylinder;

(d) Cut the sample out of the exposed face using a crystal card, scraper or spatula, being careful not to drop loose snow out of the sampler before it is weighed;

(e) The sample is either weighed with a spring scale hung in a convenient location, as shown in Figure 2.12 (left), or it can be bagged, labelled and weighed on a bench scale at a later time;

(f) It is recommended to resample each level a short distance away from the first sample (see Figure 2.15). It is important that this distance is not too great in order to decrease the uncertainty related to spatial variability. The mean height and weight of the repeated measurements determine the sample volume and mass, which is then used to calculate the density and finally the SWE for each layer. If the height or weight of the repeated measurements differs by more than 5%, the measurement should be repeated a third time;

(g) To sample the next incremental level, clear the remaining snow away from the metal plate and reinsert it near the bottom of the next level. Repeat the sampling procedure until the base surface is reached;

(h) Finally, the SWE of the whole snowpack is calculated by adding up the water equivalents of each sampled layer. Be aware that the sum of the layer thicknesses is often smaller than the measured HS due to uneven ground and the thickness of the metal plate.

Measurement protocols for snow course surveys

The following general procedure should be used to measure SWE on a snow course using a snow tube. The double sampling technique is described here.

A snow course should be established before the beginning of the snow accumulation season, although prior knowledge of local snow cover variability would be useful (see 2.2). Sampling locations where large rocks, logs, underbrush or drainage channels could impede the measurement should be avoided.
To set up a snow course:

(a) Select a site and determine the length of the course and the number of samples required to capture the spatial variability at the site. A 10-point course, with measurement points spaced 30 m apart, will have a baseline of 270 m. A 5-point course will have a 120 m baseline but should be extended if the site experiences high spatial variability;

(b) Establish the starting point of the course with a marker (stake or post) that will be visible well above the maximum HS. It is suggested that the stake or post be painted with a highly visible colour and marked clearly with a number;

(c) With a measuring tape, measure the 30 m distance to the next survey point and install the next marked stake or post. Continue like this to the end of the snow course, numbering the stakes sequentially. Obstacles such as tree stumps or ditches that may impact the snow cover should be avoided;

(d) For metadata purposes, draw a diagram of the snow course including direction of course, distance between marker stakes, slope, vegetation cover and obstacles.

Making the measurements:

(a) Measurements on the first snow course should start on the first snow survey date when the depth of the snow at the site exceeds 5 cm, and should continue according to schedule until two or more points of the 5-point course, or four or more points on the 10-point course, are snow free. A typical measurement schedule is weekly or biweekly;

(b) Sampling on a snow course should be completed early in the day when air temperatures are cooler and the snowpack is dry. A cold tube should be used to avoid snow sticking to the inside of the tube. If the tube has been stored in a warm location, lay it in the snow to allow the tube to cool off before starting the survey. Wear gloves to avoid transferring heat to the tube during the survey. Note the time of the start of the snow-course sampling;

(c) Starting with the first marked stake on the course and continuing sequentially to the last marked stake, make a bulk density sample with the tube in an undisturbed location within 1.5 m of the stake, avoiding previously sampled locations and minimizing disturbance of the area that may affect subsequent measurements. Consecutive samples
can be made at a prescribed incremental distance from the marked stake to avoid sampling in previously disturbed snow. A field diagram of the sampling locations is recommended, especially if there is more than one observer at the site;

(d) Before each sample, inspect the tube to make sure that it is free of snow and soil, and beware of the sharp teeth on the cutter;

(e) Insert the snow tube vertically, cutter first, into the surface of the snow. Gently rotate the tube so that the cutter drills into the snow until it reaches the base surface (prior knowledge of HS can assist in this assessment). Use of excessive pressure will cause the tube to plough through the snow and push material away from the tube instead of collecting it. If resistance is encountered due to ice layers, rotate the tube more aggressively clockwise using the handles, and apply increasing vertical pressure on the tube to allow the cutter to penetrate the ice layer and continue through the remaining snowpack. Hesitation during sampling should be avoided if possible. The efficiency and quality of the sample will be increased by keeping the cutter teeth as sharp as possible and resharpening the teeth with a file or sharpening stone following contact with rocks or hard surfaces;

(f) When you are confident that the cutter has reached the base surface, note the depth of the snowpack observed on the tube graduations in the data form. When sampling a deep snowpack (that is deeper than the length of the snow tube), add segments onto the tube to reach the required depth. Note the depth of the core sample in the tube, and record this information in the data form. If the depth of the core in the tube is less than 80% of the depth of the undisturbed snow, the core has likely collapsed beneath the cutter and has been spilled out of the tube or has not been captured by the cutter. In this case, you will have to take another sample;

(g) Applying increasing pressure, turn the tube at least twice clockwise so that the cutter bites into the surface beneath the snowpack. Ideally, the cutter should penetrate the surface approximately 2 cm such that an adequate soil plug can hold the snow sample in the tube during extraction from the snowpack. If the surface is too hard for the cutter to extract a plug, you will need to dig down to the surface along the tube so that a shovel or plate can be carefully inserted under the tube to hold the sample during extraction (this is generally only practical in shallow snow cover);

(h) With a soil plug in the cutter, the tube can then be carefully extracted from the snowpack with the sample intact;

(i) With a small tool, such as a flat screwdriver or small knife, remove the plug from the cutter, carefully working around the sharp teeth. If the plug has ice or large crystals clinging to it, scrape or remove these carefully, returning as much ice or snow back into the tube (or the sample collection bag);

(j) If the sample is to be weighed with a spring scale and cradle, point the tube lengthwise into the wind (or find a sheltered location), place the tube in the cradle and attach the cradle to the spring scale. The scale may be hung on a structure, such as a sturdy tree branch, to increase the stability and decrease the uncertainty of the weight measurement. Gently bounce the scale to make sure that it is not sticking, observe the weight (which includes the tube) on the scale and note it in the data form. Dump the sample from the handle end of the tube and ensure that the tube is empty and clear of snow and debris. The empty tube is then weighed again using the cradle and spring scale to record the tare weight, which is noted in the data form and removed from the total weight to derive that of the snow sample;

(k) If the sample is to be bagged and weighed at a later stage using a bench scale, empty the contents of the tube into a water-tight sealable bag from the handle end of the tube. The bag should be marked with the measurement location. An empty bag can be used to determine the tare weight prior to weighing the sample on the scale. The scale should be calibrated (for example, ±1%) and of a precision appropriate to the weight of the sample.
The calibration of the scale should be confirmed seasonally with a calibration weight. Medium-quality postal or food scales are generally accurate and portable enough for this purpose;

(I) Between bulk density sample markers, use a snow rod to obtain at least 10 equally spaced snow-depth measurements, and record these in the data form.

It is recognized that the sampling procedure and choice of sampler will vary with snow conditions. Observers may choose to use sampling equipment that is historically used in their national observation programmes, which may be adapted to the snow conditions being sampled. This is acceptable, although it is preferable that observers use equipment that has been characterized in previous intercomparison exercises (for example, Farnes et al., 1983).

For shallow snowpacks (≤50 cm) and snowpacks with ice layers or depth hoar, it is recommended to use a snow tube with a larger (>20 cm²) cutter area that is, however, small enough to ensure that a soil plug can be extracted from the surface. Larger cutter areas will be less prone to plugging with ice or dense snow and less likely to induce the collapse of non-cohesive layers under the cutter. However, the observer needs to pay particular attention to the length of the extracted core to ensure that the entire sample has been captured. For densified snowpacks or snowpacks with ice lenses, sharp cutter teeth are required to reduce sampling errors. In deeper snowpacks, a smaller diameter cutter (for example the Federal 11.2 cm² cutter and tube, Figure 2.16) may be used as it will be easier to insert into the deeper snow. It should be borne in mind, however, that smaller diameter cutters tend to overestimate SWE and that a correction (see Farnes et al., 1983) should be applied.

In deep alpine snowpacks where one or more tube extensions may be required, it might be more difficult for the observer to determine whether the snow tube cutter has come into contact with the surface. Prior information about the total HS at the marked snow stake (that is, via a snow rod or avalanche probe) is useful as a reference for the depth measurement obtained from the tube graduations. In such circumstances, and where snow cover characteristics are relatively homogenous, a single snow pit SWE measurement may be the preferred technique.

Figure 2.16. A Federal Snow Sampler (drawing by Kristi Yasumiishi, National Resources Conservation Service, United States Department of Agriculture)
2.4.1.3 Sources of error

Snow pits (SWE integrated from volume samples)

Since the sampling with cylinders involves repeated measurements through the entire snowpack, the probability of a misreading or incorrect transcription of a reading is greater than with one snow tube measurement. The plate used to separate the different measurement levels should be thin and sharp in order to minimize the impact on the applied snow layer. Where a thick ice layer is above a loose snow layer, the measurement should not be taken too close to the pit wall. Moreover, the cylinder should be drilled rather than pushed into the snow to minimize the probability of loose snow falling off the pit wall instead of entering the cylinder, resulting in an underestimate of the sample. Proper emptying and cleaning of the cylinder after each measurement is also important to avoid biasing the next sample. This can be more easily achieved with larger diameter cylinders.

Snow course (with snow tubes)

When sampling with a snow tube, the snow is largely undisturbed except for the small area around the sample. However, this method does not allow the observer to check how the tube is penetrating through the snow or to determine whether the cutter has come into contact with the surface. It is impossible for the observer to determine if the cutter becomes plugged with dense snow or ice or if layers of loosely packed crystals are collapsing beneath the cutter, therefore biasing the density sample. The observer is also unable to visually determine if the cutter is biting into the surface of the ground to obtain a sufficient soil plug to prevent spillage from the tube as the core is extracted from the snowpack. These errors are exacerbated by a snowpack with ice layers, basal ice and layers of non-cohesive crystals. The experience of the observer also plays an important role in reducing potential errors.

The design and specification of the snow tube and cutter also influence sampling errors and bias. Many commonly used snow tubes and cutters were compared to a reference in Farnes et al. (1983) and Haberkorn (2019). To summarize, the authors showed that when compared with an integrated sample from a snow pit using a Glacier sampling tube (81.9 cm²), errors were generally greater for smaller diameter tubes than for larger ones. For example, the standard Federal sampler (11.2 cm² cutter, Figure 2.16) was shown to overestimate SWE by up to 12% as a result of the design of the cutter teeth which acted to force extra snow into the tube as the tube was inserted into the snowpack. Also, smaller diameter cutters (down to 20 cm²) were more prone to plugging as they encountered ice lenses, and more likely to induce the collapse of non-cohesive layers under the cutter, resulting in an underestimate of total SWE. The trade-off with size is the ability of larger diameter cutters to cut a sufficient soil plug for the sample to be held in the tube during extraction, thus avoiding use of a shovel or plate to retain the tube, which would cause increased disturbance of the snowpack. A cutter with sharpened teeth will help to reduce these errors. Farnes et al. (1983) showed that the ideal cutter area was about 30 cm², demonstrated by a low error percentage of the ESC30 sampler, which ranged from a 5% overestimate to a 2% underestimate.

New snow or wet snow can also increase sampling errors, especially if the observer is collecting core samples to be weighed later rather than using a spring balance and tube cradle. Depending on temperature, new and wet snow will tend to stick in the tube and this will result in an underestimate of the SWE. This could exceed 10%.

The material of the sampling tube could also help reduce errors. The sample depth can be more easily read with clear plastic tubes than with slotted aluminium tubes, thus reducing the potential for reporting errors. It is also much easier to see if a snow core has collapsed when it can be observed through a transparent tube. Although tubes made from a clear plastic material are easier to use and lighter to carry, they are not as durable as aluminium tubes, especially in the cold.
2.4.2 Automated measurements of water equivalent of snow cover

2.4.2.1 Measurement techniques

There are several techniques for the automated measurement of SWE. The most common are weighing mechanisms (snow pillows and snow scales) and passive radiation (gamma) instruments. Other devices, such as GPS (Jacobson, 2010; Koch et al., 2014) and cosmic ray instruments (Gottardi et al., 2012; Sigouin and Si, 2016) are also available and the reader is referred to the current literature for more information.

Snow pillows

This is probably the most common method for the automated measurement of SWE. Snow pillows have been in use since the 1960s (Beaumont, 1965) and consist of an antifreeze-filled synthetic rubber or stainless steel bladder with an approximate diameter of 3 m. The antifreeze fluid usually consists of a mixture of methyl alcohol and water or a methanol-glycol-water solution; since methanol is a toxic substance, it should be handled with care (see Volume I, 6.3.2, of the present Guide). The pillow is installed level with the surface of the ground so as not to affect the accumulation of snow on the surface (see Figure 2.17, left). The hydrostatic pressure in the bladder increases with the weight of the overlying snowpack and is measured either with a float device, which is pushed up a vertical standpipe, or a pressure transducer. The calibrated readings of either instrument are then converted to mm w.e. The typical measurement frequency is hourly with resolutions as high as 1 mm w.e. (Beaumont, 1965) and expected uncertainty of 6%–12% (Palmer, 1986). To prevent damage to the equipment and to preserve the snow cover in its natural condition, it is recommended that the site be fenced and the fluid-filled bladder protected against animal damage. Under normal conditions, snow pillows can be used for 10 years or more but there are environmental concerns because of the toxicity of the bladder contents.

Figure 2.17. Operational snow pillow site (left, photo courtesy of the United States Department of Agriculture), and snow scale (right) with the central panel being the sensing element (photo courtesy of the WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland)
Snow scales

Snow scales (see Figure 2.17, right) are becoming more common as a replacement for snow pillows. The measurement principle is similar in that the instrument measures the weight of the snowpack on top of it, converting the weight to an \(SWE \) estimate. However, the weight is measured with an electronic load cell, eliminating the need for a fluid-filled bladder. Snow scales have a typical measurement area of 6 m\(^2\) to 10 m\(^2\) and although the typical measurement frequency is 1 hour the instruments have the capability of measuring at higher frequencies. The measurement resolution is typically less than 1 mm w.e. but the expected uncertainty is 10%.

Passive gamma radiation instruments

Passive gamma radiation instruments (see Figure 2.18) work on the principle that the natural breakdown of potassium or thallium in the soil produces a background level of gamma radiation which is attenuated by the water in the snowpack. The instrument, mounted above the surface, compares gamma radiation measurements of snow on the ground with measurements obtained over bare soil, and calculates the attenuation due to the presence of snow. The attenuation is then related to \(SWE \). The instrument typically reports an \(SWE \) value every 6 hours with a resolution of 1 mm w.e and expected uncertainty of 5% to 30% (Smith et al., 2017). The response area is related to the height of the instrument (~40 m\(^2\) at 2 m above the snow surface). Instruments require a pre-snowpack soil moisture calibration so that the attenuation due to soil moisture can be accounted for in the retrieval of \(SWE \).
2.4.2.2 Measurement procedures and best practices

Choice of automated instruments

The choice of automated instruments should depend on site conditions, the required temporal measurement resolution, installation considerations and environmental concerns. Passive gamma radiation instruments should be used if the instrument needs to be installed over the surface without disturbing the substrate, or to measure an existing snowpack. However, these instruments require long (more than 6 hour) integration periods which limit their temporal resolution and increase the measurement uncertainty. Passive gamma radiation instruments also have a maximum SWE depth measurement capability which should be taken into account if the measurement is to be made in deep alpine snowpacks (greater than ~600 mm w.e.). The user should also be aware that passive gamma instruments may interpret near-surface soil moisture as SWE, therefore overestimating the total SWE in the snowpack (Smith et al., 2017). Snow scales are the preferred option for measuring SWE at temporal resolutions of 6 hours or less, but they require more substantial surface preparation before installation. The user must also consider the potential for the system to “bridge” in some snowpack conditions (snow with freeze and thaw cycles, wind-swept regions, etc.). While snow pillows have capabilities similar to those of snow scales, their use should be avoided due to increased maintenance concerns and potential environmental hazards resulting from animal damage and leakage of the antifreeze fluid from the rubber bladder. The desired uncertainty of an automated SWE measurement should be ±5 mm w.e.

Installation height

Snow scales (and pillows) are to be installed flush with the surface, to prevent adverse edge effects. Passive gamma radiation instruments need to be installed at the height recommended by the manufacturer but generally 2 m above the maximum HS, noting that the height above the snow affects the radius of the instrument response area.

Mounting structure

Gamma radiation instruments are generally not affected by disturbances to the mounting structure, which should, nevertheless, be designed and installed so as to minimize the preferential accumulation of snow inside the response area of the instrument. This applies also to snow scales and pillows, even though they are not installed above the surface. The mounting structure should be as simple as possible yet sturdy enough to securely support the instrument.

Data quality control

As with HS, the first level of data quality control should be a range check for reasonable (site dependent) values between zero (or close to zero to allow for a small amount of instrument drift) and the maximum possible SWE for the site. An appropriate data filter should also be used to check for unreasonable step changes in the hourly (or daily) SWE values, taking into consideration maximum accumulation and ablation rates and wind redistribution. As noted above, changes in SWE can be linked to changes in HS using a co-located instrument. The snow-depth instrument will help to identify the snow-free period (that is the period when the SWE instrument should also read zero) and bridging occurrences on weighing instruments (that is extended periods of increasing HS without a corresponding increase in SWE).

2.4.2.3 Sources of error

Errors in automated measurements can occur due to non-environmental issues such as instrument malfunction and incorrect instrument calibration (or calibration drift). Errors can also be the result of circumstances related to the measurement environment such as bridging of weight-based measurements or changes in mid-season soil moisture levels under a gamma
radiation instrument. Non-environmental errors are more easily identified through quality control procedures (that is min/max filtering) than environmental errors, which tend to be more subtle and less easily detected in the absence of manual sampling.

Under- and over-measurements are a common issue with weight-based SWE measurements. It is generally caused by freeze–thaw cycles and snowpack settling, which ultimately leads to a disconnect between the weighing mechanism and the overlying snowpack, and the error could theoretically be as high as 100%. The occurrence of measurement errors is most easily identified by periodic manual SWE measurements near the instrument, but often this is not possible. An indication of under-measurement is an increase in HS (over several days or weeks) without a corresponding increase in instrument-measured SWE. This is most easily detected by co-locating an automated HS instrument with the SWE instrument. However, even a co-located snow depth sensor may not guarantee a reliable method for identifying those errors, especially when there is possibility of rain events or when under- or over-measurements are subtle.

Errors in automated SWE weight-based measurements, especially with snow scales, can be caused by the instrument either settling into the substrate (for example, sand) in which it is installed, or heaving out of the ground due to freezing and thawing of the substrate (for example, soil with a high clay and water content). Settling would decrease the pressure on the load cell and result in an underestimation of SWE while heaving would increase the pressure on the load cell, thereby leading to an overestimation of SWE. Both conditions are difficult to assess during the accumulation period but may be identified by observing changes in the height of the instrument relative to the surface (which ideally should be zero) as soon as the instrument is free of snow. The magnitude of these errors is difficult to predict but they are likely to be small in comparison to bridging errors discussed above.

Gamma radiation instruments are influenced by the amount of soil moisture present when the soil freezes and are sensitive to mid-season changes in soil moisture. Generally, the instruments should be calibrated annually with a gravimetric soil moisture measurement made just before the soil freezes. However, this is usually not possible as often the first seasonal snow accumulation will occur on non-frozen soil. It is estimated that SWE errors are approximately 10 mm w.e. for each 0.10 change in gravimetric water content (Smith et al., 2017). Monitoring the change in soil moisture prior to the ground freezing may assist in identifying these errors, which could potentially persist throughout the accumulation period.

2.5 SNOW PROPERTIES

Snowpack observations require a large enough snow pit to allow for multiple observations in addition to measurements of SWE (see 2.4). The pit face on which the snow is to be observed should be in the shade, vertical and smooth. On inclined terrain, the shaded observation face should be parallel to the fall line, which is the natural downhill course of a slope.

Characterizing a distinct layer of snow requires more than simply classifying the observed grain shapes. Additional properties such as snow density also need to be recorded to give as accurate as possible a description of the snow type and its state. Appendix C.2: Snowpack observations in Fierz et al. (2009) contains guidelines on how this is best achieved, with examples shown in either graphical or tabular form.

2.6 DEPTH OF SNOWFALL

Currently, there are no accepted automated techniques for measuring HN. The main reason for this is that HN is to be measured as the accumulation on a snow-free surface while suitable automated snow-depth instruments would generally be used to measure incremental depth increases on an existing snow cover. If there was snow on the ground before the measurement,
it would be incorrect to calculate HN as the difference between two consecutive measurements of HS, since lying snow settles and may suffer ablation, resulting in an underestimation of HN. Therefore, only manual techniques are described here.

2.6.1 Manual measurements of depth of snowfall

2.6.1.1 Measurement techniques

The depth of snowfall is measured with a graduated device, such as a ruler, at a defined temporal interval (the most common interval being 24 hours). Snow is allowed to accumulate undisturbed on an artificial surface (for example, a snowboard; see Figure 2.19) for the prescribed measurement interval, then a ruler is inserted vertically into the accumulated snow to obtain a depth measurement. After the observation, the artificial surface is cleared of snow and placed on top of the existing snowpack in preparation for the next observation period.

Another method for measuring HN consists in using a cylindrical container, such as a rain gauge, of sufficient diameter (at least 20 cm) and depth to prevent snow from blowing out. The snow can thus be collected uncompressed in the container and can be measured with a ruler to estimate depth. However, a cylinder mounted high enough above the surface to prevent catch of blowing snow is also subject to wind-induced bias. A shield around the collector may reduce but not eliminate this bias.

Some work has been done on automated techniques to estimate HN (Fischer, 2011) but this has proven difficult to gauge without guidance from an observer due to factors such as drifting and melting.

2.6.1.2 Measurement procedures and best practices

The depth of snowfall should be measured using a snowboard made of plywood (2 cm thick or less) with dimensions (length and width) between 40 cm and 60 cm. The snowboard should be painted white or covered in white felt to prevent the board from becoming warmer than the snow surface during the day. The snowboard should be placed directly on the bare ground prior to the accumulation of snow. See 2.2 for siting and exposure considerations.

Figure 2.19. Examples of snowboards used for measuring HN. The board on the left is called a Weaverboard and is used for new snow observations in Canada (photo courtesy of Environment and Climate Change Canada). The board on the right, which has a graduated rod in the centre, is used by the Spanish State Meteorological Agency.
Snow is to be allowed to collect undisturbed on the snowboard during the observation period. Observations are to be made at the same time each day. The observer should measure HN on the board using a ruler to the nearest 0.5 cm. The depth of snowfall may have to be measured in several locations on the board if the snow is not evenly distributed, in which case an average depth should be reported. After the depth has been measured and recorded, the board should be swept clear and placed on top of the existing snow cover for the next accumulation period. If the snow cover on the board is less than 50% or too thin to be measurable (less than 0.5 cm), the observer should record “trace” as the observation. Surface hoarfrost on the snowboard should not be considered as new snow and should be cleared off at the time of the observation.

In the event of wind redistribution or melting, the observer will be required to exercise judgement when interpreting HN. If wind has swept some or all of the snow from the snowboard, the observer should estimate what would have fallen on the board in the absence of wind. The observer can make this estimate taking into account what can be observed in the vicinity of the board, and considering both the presence of drifts and shallow areas. With inhomogeneous depths of snowfall due to wind redistribution, observers should make multiple measurements until satisfied with their approximation of the mean. If melting has occurred during the accumulation period, the observer should make an estimate of what the depth of snowfall would have been had no melting occurred. In either event, the observer shall make a note regarding melting or blowing snow such that the observation is known to be an estimate rather than a ruler measurement. If snow is found on the board, but the observer is confident that no snowfall has occurred since the last observation period (for example, in the event of drifting snow), the observer should note that HN is zero.

2.6.1.3 Sources of error

The main source of error in HN measurements is the estimate of depth in the presence of either wind redistribution or melting, and it could largely depend on the experience of the observer. The magnitude of these errors is difficult to assess but could be as much as 100%. Errors due to wind can be reduced by proper siting and minimizing the exposure of the snowboard. Errors due to melting can be minimized by not exposing the snowboard directly to the sun. The uncertainty of the measurement can also be heavily influenced by the timing of the measurement. Especially during warm spells, observations an hour earlier or later may make a difference of several centimetres.

Small errors (<0.5 cm) can occur as a result of misreading the depth measurement on the ruler, especially at an angle to the snow surface. This can be minimized by reading the ruler graduations at an angle as close to perpendicular with the surface as possible.

2.7 PRESENCE OF SNOW ON THE GROUND

This observation is usually done in situ by an observer although semi-automated or automated techniques such as photometry can be used.

2.7.1 Manual measurements of presence of snow on the ground

2.7.1.1 Measurement techniques

The manual measurement of PSG generally consists of a visual assessment of whether or not the field of view of the measurement site is more or less than 50% covered with snow of any depth.

Photometry techniques for measuring the presence of snow are identical to visual measurements except that the interpretation of coverage is done via a photograph or live video feed rather than in person. Automated techniques for extracting this information from photographs are evolving, but as they are not widely used, they are not discussed here.
2.7.1.2 Measurement procedures and best practices

Firstly, the area in which PSG is to be assessed needs to be defined. This should be the area in which meteorological and cryospheric measurements are being made and should not be limited to the area surrounding the snow stake. The field of view of this area is defined in 2.1.1.

At the same time each day, the field of view of the measurement site should be observed visually or photographed, and the percentage of snow cover assessed. If the snow cover fraction is larger than 50%, the site should report the presence of snow. If the snow cover fraction is less than 50%, the site should report no presence of snow. This observation is independent of the point HS measurement, although the opposite is not true.

2.7.1.3 Sources of error

The main source of error in this observation is the observer’s interpretation of the snow cover fraction, especially as it approaches 50%. A misinterpretation might affect the timing of snow-free report for the site by several days.
REFERENCES AND FURTHER READING

CHAPTER 3. MEASUREMENT OF GLACIERS

3.1 GENERAL

3.1.1 Summary

This chapter describes state-of-the-art methods used in measurements of glaciers and their changes in response to climatic forcing. Following up on previous guidelines that describe terminology and methodology in glaciological measurements and monitoring, it focuses on the classical measurements of glaciological mass balance, glacier front variations and glacier thickness. Many of the methods developed during the 20th century are still in active use (stake and pit methods for mass balance, distance measurements for glacier front variation). In recent decades, however, new technologies such as ground penetrating radar (GPR), global navigation satellite systems (GNSSs), airborne and spaceborne laser scanning, a range of new optical and radar satellite sensors, uncrewed aerial vehicles (UAVs) and automated ablation measurements have opened up new opportunities for researchers and professionals. Progress has also been made in observational technology, data analysis and processing. Various modelling approaches are also used to interpolate measurements and to further evaluate the data.

In the 21st century, a transformation is likely to occur towards more automated, real-time glaciological observations supported by satellite monitoring and modelling. Nevertheless, it is clear that field-based measurements will remain an important pillar of monitoring efforts as they allow seamless continuity of long-term data series. Furthermore, localized mass-balance measurements are unlikely to be fully replaced by automated and remotely applied methods. This chapter does not aim to provide a manual for all the newly emerging technologies nor to describe in detail the methodology behind new datasets and approaches. Rather, it focuses on the field techniques and mentions remote-sensing platforms and techniques needed by researchers for measuring glacier mass balance, front variation and ice thickness (such as deriving glacier outlines or digital terrain models). Not all glaciological variables are covered in this chapter (for example, ice velocity, ice temperature), nor are techniques to study glacial hydrology or ice avalanches. Ice core studies are not covered here, either.

Recommendations:

- **Data archiving and metadata**: Data collected in the field should be archived with proper metadata and submitted to data repositories such as Global Land Ice Measurements from Space (GLIMS) (for example, glacier outlines, snowlines, flowlines) and the World Glacier Monitoring Service (WGMS) (ice thickness, glacier front variation, glaciological and geodetic mass balance, special events). It is recommended that the researchers refer to published guidelines (such as GLIMS, 2022; WGMS, 2019) prior to data analysis so that relevant metadata are included to facilitate their usage.

- **Combination of different methods to reduce uncertainties**: Considerable potential lies in the combination of different observational methods to reduce uncertainties and to increase the consistency of the final results. This pertains for example to the frequent validation of in-situ mass-balance records with geodetic ice-volume changes or the homogenization of long-term length change records with aerial or satellite imagery.

- **Increase consistency and foster knowledge transfer**: Standardization of glacier monitoring products is crucial to increase the consistency and comparability of data sets at the global scale. Adherence to common protocols as well as regular exchange between national monitoring programmes are recommended to foster knowledge transfer.
3.1.2 Introduction

Glaciers form in regions of the world where winter or wet-season snowfall survives summer melt. Their changes in response to climate variations have been monitored on the ground for more than 100 years. Over recent decades, the coverage and detail of airborne and spaceborne observations have been steadily increasing, allowing glacier monitoring on a global scale. Existing observational time series from long-term field measurements combined with remote-sensing data provide the foundation for our understanding of glacier response to climate change.

Changes in glacier length, extent and volume occur in response to changes in air temperature and precipitation, on timescales ranging from years to millennia.

These changes have local, regional and global effects ranging from changes to water availability for agriculture to rising global sea levels. In addition, human lives and societal infrastructure are impacted by glacier-related hazards. Accordingly, modelling the mass balance and future evolution of glaciers from local to global scales is an active research area, making use of field and remote-sensing data for calibration and validation purposes. This calls for standardization of best practices in glacier measurements and data treatment.

The main focus of this chapter is on field methods to determine glacier mass balance.

Introductory sections cover glacier inventory data (outlines, areas, volumes) and measurements of glacier front variations. The text is partly based on previously published manuals and guidelines that describe the terminology and methodology used in glaciological measurements and monitoring, in particular:

- Østrem and Brugman (1991): A comprehensive manual for scientists conducting mass-balance measurements on glaciers, including also sections on meteorological and hydrological observations.
- Kaser et al. (2003): A manual on mass balance work, with focus on methods and safety during measurements on high-mountain glaciers.
- Cogley et al. (2011): The comprehensive Glossary of Glacier Mass Balance and Related Terms, including definitions of the variables used.

Since glaciers are fed by snowfall, repeated reference is made to methods used in measurements of snow on the ground (Fierz et al. 2009; and Chapter 2 of Volume II of the present Guide).

3.1.3 Definition

Glacier. A perennial mass of ice, and possibly firn and snow, originating on the land surface by the recrystallization of snow or other forms of solid precipitation and showing evidence of past or present flow (Cogley et al., 2011).

This definition is physically based and is at the base of that used in remote-sensing studies aiming to delineate the outlines of individual glaciers (see Section 3.3.2). It is stressed that neither of these definitions is intended to be used in any sort of legal context.

In daily language, the term glacier often refers not only to the various types of glaciers but also to ice caps (a dome-shaped ice body with radial flow) and to icefields (an ice mass on a plateau from which several valley glaciers emerge). This convention will be followed in this chapter, in accordance with recent recommendations (IPCC, 2021; Cogley et al., 2011).

In mass-balance studies, glaciers are delineated by outlines across which mass transfer of ice is zero. If mass transfer occurs (for example, at the grounding line of a calving glacier), the ice discharge must be included as a component of the mass balance. On ice caps, separate ice-flow
basins can be delineated by determining the direction of the driving stress from surface elevation models. In practice, however, this is often implemented by deriving a flow direction grid from a digital elevation model (DEM) and calculating hydrological basins from watershed analysis.

3.1.4 **Glaciers around the world**

Glaciers are found in all regions of the world when climate conditions permit. Accordingly, their distribution on the Earth’s surface is not uniform due to widely varying climatic and topographic conditions. Glaciers form where snow deposited during winter (or during periods of high accumulation) does not melt entirely during the summer season (or dry season). Air temperature is the main control on the existence of glaciers, which thus are mainly present in the polar and subpolar regions or at high elevations. Topographic conditions and precipitation (snowfall) levels must be sufficient for ice masses to form through transformation of snow to ice and for it to be sustained. When a critical thickness is attained, the accumulated mass starts to deform and flow under its own weight, transporting part of the mass to lower elevations where the ice melts. Past climatic conditions have caused a much larger extent of ice masses than at present. As an example, 25% of the Earth’s land surface was covered with ice sheets and glaciers during the Last Glacial Maximum (LGM), whereas global ice cover is presently around 10% (Ruddiman, 2014).

Today, more than 200,000 glaciers are known to exist on Earth outside of the polar ice sheets, covering a total area of 705,000 km2 (RGI Consortium, 2017) and an estimated volume of 158,000 km3 (Farinotti et al., 2019). This excludes the two large ice sheets in Antarctica and Greenland but includes glaciers and ice caps in the periphery of the Greenland Ice Sheet.

3.1.5 **Variables used in mass-balance observations**

The *WIGOS Metadata Standard* (WMO-No. 1192) prepared by WMO incorporates the key variables listed in Table 3.1, which are essential for the determination of long-term glacier mass balance from point measurements. Point measurements of accumulation and ablation allow calculation of point mass balance. Multiplication of interpolated point mass-balance values with the known areas of elevation bands covered by a glacier yields glacier-wide mass balance (glaciological method). Mass balance is typically reported in m or mm water equivalent (w.e.), and the definition of water equivalent of snow cover (SWE) is therefore included in the table. See detailed discussion of SWE determination in Chapter 2, 2.4 of Volume II of the present Guide.

The *geodetic method* for determination of glacier mass balance by repeated mapping of the glacier surface and related subtraction yields mass-balance volume change over a stated period of time. The volume change has to be converted to mass change using appropriate assumptions about the densities of ice and snow. See further description of this method in Section 3.9.2.

3.2 **GLACIER INVENTORIES AND CLASSIFICATION SCHEMES**

3.2.1 **Glacier inventories**

The first efforts to create a worldwide inventory of glaciers were initiated during the International Hydrological Decade, declared by the United Nations Educational, Scientific and Cultural Organization (UNESCO) for the period 1965–1974. This effort resulted in the World Glacier Inventory, which was published in 1989 by WGMS. WGMS continues the collection and publication of standardized information about ongoing glacier fluctuations, that is, changes in glacier length, volume, and mass since 1986. The United States of America (US) National Snow and Ice Data Center (NSIDC), founded in 1982, also has archived data on glaciers, for example, the World Glacier Inventory (WGI). In 1995, the GLIMS initiative was launched,
Table 3.1. Key measured/derived variables in mass-balance studies on glaciers. All variables except SWE are listed in the WIGOS Metadata Standard.

<table>
<thead>
<tr>
<th>GLACIERS</th>
<th>WMDR notation (WMO Code Registry)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>Definition</td>
</tr>
<tr>
<td>Surface accumulation at a point</td>
<td>The mass added to the glacier at a point on its surface expressed over a stated period of time.</td>
</tr>
<tr>
<td>Surface ablation at a point</td>
<td>The mass removed from the glacier at a point on its surface expressed over a stated period of time.</td>
</tr>
<tr>
<td>Glacier mass balance at a point</td>
<td>The sum of all processes adding and removing mass from the glacier at a point on its surface, expressed over a stated period of time.</td>
</tr>
<tr>
<td>Glacier area</td>
<td>Area enclosed by the projection of the glacier outline onto the surface of an ellipsoid approximating the surface of the Earth or onto a planar horizontal approximation to that ellipsoid. The glacier area excludes nunataks but includes debris-covered parts of the glacier. The glacier outline separates the glacier from unglacierized terrain and from contiguous glaciers.</td>
</tr>
<tr>
<td>Glacier-wide mass balance</td>
<td>The result of all processes adding and removing mass from the glacier at its surface, expressed over a stated period of time and integrated over the entire glacier (or basin) area.</td>
</tr>
<tr>
<td>Water equivalent of snow cover (SWE)</td>
<td>The vertical depth of water that would result if the snow cover melted completely, which equals the snow-cover mass per unit area. The SWE is the product of the snow depth in metres and the depth-averaged bulk snow density in kg m⁻³. SWE can be expressed in mm w.e. or in kg m⁻² (1 000 mm w.e. equals 1 000 kg m⁻²).</td>
</tr>
</tbody>
</table>

Notes:

a WMO Codes Registry: wmdr/ObservedVariableTerrestrial

b On a (typical) mid- to high-latitude glacier, accumulation will dominate in winter and ablation during summer. Both processes will, however, usually occur during both winter and summer. Thus, the winter balance will be the net result of mass added and lost throughout the winter and the summer balance likewise.

c Unless otherwise stated, glacier mass balance refers to surface mass balance and does not include basal or internal melting but includes refreezing in snow and firn.

under which regional investigators contribute glacier outlines\(^3\) to a global database for open and free redistribution. A further initiative started in 2011, the so-called Randolph Glacier Inventory (RGI), which has compiled and updated a globally complete inventory of glacier coverage (Pfeffer et al., 2014; RGI Consortium, 2017). Between 2020 and 2023, an International Association of Cryospheric Sciences (IACS) Working Group aims to maintain and further develop the RGI. The Global Terrestrial Network for Glaciers (GTN-G), established in 2009 and operated jointly by WGMS, NSIDC and GLIMS, oversees the management and upgrading of glacier monitoring as part of a global observation strategy under the auspices of the United Nations and IACS.

3.2.2 Characterizing glaciers

Glaciers can be described by a list of parameters outlining their geographical and topographical characteristics, as summarized in Table 3.2. As is evident from the table, slightly different conventions are used by WGMS, GLIMS and NSIDC. The differences largely follow from the historical development and the different inventories of the observatories.

\(^3\) https://www.glims.org/
Table 3.2. Parameters characterizing glaciers

<table>
<thead>
<tr>
<th>Country or territory<sup>a</sup>
Country or territory in which the glacier is located. If a country code is required, the 2-letter ISO 3166 code can be used: (https://www.iso.org/iso-3166-country-codes.html)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification – glacier number<sup>a,b,c</sup>
WGMS Identifier: Attribute A3 is a 5-digit numeric code. The GLIMS ID is of the form: GnnnnnEmmmmm[N</td>
<td>S]
RGI Identifier: A 14-character identifier of the form RGIvv-rr.nnnnn, where vv is the version number, rr is the first-order region number and mnnnn is an arbitrary identifying code that is unique within the region.</td>
</tr>
<tr>
<td>Glacier name<sup>a,b,c</sup>
WGMS: Attribute A2
GLIMS: If an official name of the main glacier is available, it should be provided.
RGI: Name of the glacier, or the WGI or WGI-XF ID code (modified after Müller et al., 1978) if available.
The names of individual tributaries or outlet glaciers should also be listed, when appropriate.
Abbreviations are allowed for very long names. The spelling of the name should be in the Latin alphabet.
In some cases, glaciers may be unnamed and will only carry a catalog number but may later be named, or a name that has been in use by local inhabitants is discovered. In such cases this field should allow for an alternative name to be included.</td>
<td></td>
</tr>
<tr>
<td>Location – geographical entity, mountain range or group<sup>a</sup>
WGMS: Attributes A8 and A9
Refers to a known geographical entity, typically a mountain range, which gives a rough idea of the location of the glacier.
Examples: Western Alps, southern Norway, Andean Range, Tien Shan, Himalayas, Alaska.
Examples of more specific locations: Rhone basin, Jotunheimen, Brooks Range.</td>
<td></td>
</tr>
<tr>
<td>Coordinates<sup>a,b,c</sup>
– centrally located point near the equilibrium line
The coordinates should describe the location of a central point within the glacier outline as accurately as possible. A suitable point is in the central parts of the main stream of ice. The latitude and longitude of this point should be given in decimal degrees, with a minimum precision of 4 decimal places.
The coordinate point can be created automatically from the glacier outline in geographical information system (GIS) software. The location will change when the perimeter changes.</td>
<td></td>
</tr>
<tr>
<td>Date<sup>a,b,c</sup>
WGMS: Attributes B11, C8, C10, D14, D16, E6, E7, E8, F4
The WGMS attributes refer to dates of surveying, front variation measurements, mass-balance measurements, reference dates and dates of special events.
When glacier outlines are submitted to GLIMS or RGI, the date of acquisition (day, month and year) should be included with the submission. Special care is required when multitemporal data are used in the same region.</td>
<td></td>
</tr>
<tr>
<td>Surface area<sup>a,b,c</sup>
WGMS: Attributes D7, E15, E17 (and additional attributes on area change accuracy)
The surface area of a glacier is a key parameter, used in mass-balance modelling and other studies, including assessments of global glacier changes. The area can be calculated directly in GIS software. It is important that glacier area be measured in an appropriate metric projection. The value should be recorded in square kilometers with at least two but preferably three digits after the decimal point.</td>
<td></td>
</tr>
<tr>
<td>Length<sup>a,b,c</sup>
WGMS: Attributes B9, B10
The maximum length of a glacier is defined as the length of the longest flowline of the whole glacier.
The mean length is the average of the lengths of each tributary along its longest flowline to the glacier snout. It is recommended that initially only the maximum length be determined as this reduces the workload considerably. The mean length could be added in a later step.
For ice caps, the above method for determining maximum length applies to each outlet glacier and ice-flow basin. The longest and shortest width of the ice cap may be more relevant information in some cases and these parameters are readily determined from maps or in GIS.</td>
<td></td>
</tr>
<tr>
<td>Elevation (max, min, mean, median)<sup>a,b,c</sup>
WGMS: Attributes B6, B7, B8
It is recommended that these parameters are determined from a digital terrain model (DTM) of the glacier or ice-flow basin (using the GLIMS ID or WGMS number as an identifier). The mean elevation is equal to the sum of all elevation values of individual DTM cells divided by the number of cells within the glacier boundaries. The median elevation is the elevation which divides the glacier surface area such that 50% of the area is above and 50% is below this elevation.</td>
<td></td>
</tr>
</tbody>
</table>

WGMS Attribute EEE8 is the elevation of a mass-balance measurement point.
Country or territory
Country or territory in which the glacier is located. If a country code is required, the 2-letter ISO 3166 code can be used: (https://www.iso.org/iso-3166-country-codes.html)

Hypsography The area-elevation distribution of a glacier or ice cap can be calculated from a glacier DTM. It is recommended to compute the total area in each 100 m interval (or a narrower elevation band for smaller glaciers).

Orientation WGMS: Attributes A13, A14
The orientation (aspect) of the down-glacier direction can be calculated from DTMs as the mean orientation of all DTM cells that are covered by the glacier. The orientation can be calculated separately for the accumulation and ablation regions.

Mean slope
The mean slope is a good proxy for other parameters, like mean thickness. It can be calculated as the mean slope of all DTM cells covering the glacier.

Notes:
a WGMS parameters. These parameters (attributes), as used for WGI, are outlined in the WGMS Attribute Description (2019), available at www.wgms.ch.
b GLIMS parameters. The basic GLIMS parameters are given in Paul et al. (2009, 2010), who provide a detailed description of the basic glacier parameters as defined by the GLIMS consortium and scripts for parameter calculation.
c RGI parameters. RGI data fields are described by the RGI Consortium (2017).

3.2.3 Glacier classification
A morphological glacier classification scheme was introduced in 1970 by a Working Group of the International Commission on Snow and Ice/International Association of Scientific Hydrology (ICS/IASH), the forerunner of IACS (Müller et al., 1970), and subsequently adopted and updated by WGMS. The GLIMS glacier classification system builds on these earlier schemes and takes into account specific glacier features encountered in different parts of the world, including the polar regions (Rau et al., 2005). It uses nine digits to characterize the glacier type, form, frontal characteristics, longitudinal profile, source region tongue activity and moraine characteristics. This classification scheme is not widely used anymore and is thus not reproduced here, but Figures 3.1(a)–(h) display examples of different glacier types, classified according to the above-mentioned schemes and located in various mountain/highland regions.

3.2.4 Selecting glaciers for measurement
The following points should be considered when selecting glaciers to be included in a network for long-term mass balance or length change monitoring and to conduct related glaciological fieldwork. The description is partly based on Kaser et al. (2003).

Area. A glacier or ice cap selected for a mass-balance programme will ideally yield results that are representative for the regional mass balance. In inventory studies glaciers are often defined by a lower size limit of 0.01 km² (see, for example, Paul et al., 2020), but many glaciers of such small size might experience drastic changes in surface area and volume in response to local climate effects. For mountain glaciers the ideal area for mass-balance studies is 1–10 km², allowing traversing on foot or by skis. Ice caps and ice fields range in size between 10 and 50 000 km² and a ground-based mass-balance programme on most ice masses in that size range will have to rely on helicopters, snowmobiles or other motorized vehicles.

Altitude range. The altitude span should be representative for the glacierized region and should allow the detection of variability in the equilibrium line altitude (ELA).

Catchment area. For ice caps, a precise survey of surface topography (and bedrock topography, if available) should be used to delineate the ice-flow basins that should be monitored. The selection of mountain glaciers confined within separate cirques or valleys should aim to limit the complexity of accounting for other sources of snow accumulation than precipitation (such as avalanches from surrounding steep rock walls).
Figure 3.1. Different glacier types: (a) valley glacier (Grosser Aletschgletscher, Switzerland); (b) ice cap (Langjökull, Iceland); (c) icefield (South Patagonian Ice Field); (d) mountain glacier (Kolahoi Glacier, India); (e) ice patch (Juvfonne, Jotunheimen, Norway); (f) cirque glacier (unnamed glacier, Svalbard); (g) piedmont glacier (Elephant Foot Glacier, north-eastern Greenland); (h) calving glacier (Perito Moreno Glacier, Argentina).

Source: (a) Matthias Huss; (b) SENTINEL-2, European Space Agency (ESA); (c) National Aeronautics and Space Administration (NASA) (www.antarcticglaciers.org); (d) Thorsteinn Thorsteinsson; (f) © Glaciers online, M. Hambrey; (g) www.wikimapia.org
Geometry. Fieldwork and analysis will be simpler if the accumulation area and the ablation area are well defined and not complex in shape.

Frontal ablation. If calving into lakes or the ocean or break-off by ice avalanches at the snout play a significant role in the glacier’s mass budget, this component needs to be accounted for in the mass-balance assessment.

Glacier surges. Surging glaciers are not ideal for long-term mass-balance studies because of extensive mass distribution occurring during surges, which in most cases changes the relative amounts of ice in the accumulation and ablation areas. This complicates mass-balance calculations.

Debris cover. Fieldwork on debris-covered glaciers can be challenging, since debris cover complicates the installation and maintenance of stake networks and the interpretation of glacier–climate interactions. In mountain ranges where debris-covered glaciers are common, they should be included in mass-balance programmes so that a representative sample of glaciers is being monitored.

Surface. Glaciers with smooth surfaces are easiest and safest for travel and mass-balance measurements. Crevassed areas should be avoided to the extent possible. Fixed routes of travel on the glacier can be established using a Global Positioning System (GPS) device to avoid travelling in crevassed areas. This reduces the risk of accidents when traversing the snow-covered glacier.

Accessibility. Access should be as easy as possible to facilitate regular fieldwork, minimize risks and allow a quick retreat in case of emergencies.

Safety issues. Personnel conducting measurements on glaciers need to have proper training in glacier travel and rescue operations. This should involve the use of ropes, harnesses, ice screws and ice axes as well as general mountaineering experience (Figure 3.2). Training should be offered on a regular basis and self-training should be encouraged. Access to documentation

Figure 3.2. Safe travel on glaciers. The risks of traveling on glaciers can be minimized by proper training in the use of safety equipment and by maintaining knowledge of local conditions. Roping up is essential when a freshly fallen layer of snow covers crevasses and possibly moulin.
CHAPTER 3. MEASUREMENT OF GLACIERS

Describing equipment, methods and skills needed for glaciological fieldwork is essential (see example in the appendix). In addition, documentation should be available on access routes to each glacier in the measurement programme and dangers present there (crevasses, avalanches).

Data availability. When selecting glaciers for long-term monitoring, sites with available data from previous measurements (glaciological and meteorological variables, remotely-sensed data) should be favoured.

3.3 OUTLINES AND AREAS OF GLACIERS

3.3.1 Introduction

Trigonometric surveying of glacier outlines and mapping of their surface elevation was initiated in the nineteenth century (Bauder et al., 2007). Photogrammetric methods improved the accuracy of surface elevation contours, and many glacierized regions of the world were mapped by aerial photography during the first half of the twentieth century (Hattersley-Smith, 1966). Barometric surveys and GPS measurements have been used extensively to determine surface profiles on glaciers and ice caps (Björnsson, 1988; Björnsson and Pálsson, 2020). Data from airborne and spaceborne radar systems (synthetic aperture radar (SAR) and interferometric SAR (InSAR) techniques) are now routinely used to create DTMs, often referred to as digital elevation models (DEMs) of glacier surface topography. Multispectral sensors (such as those on the Pléiades, ASTER and SPOT satellites) allow mapping of glacier surfaces with an accuracy of 0.5–2 m in the vertical (see, for example, Berthier et al., 2014) and airborne light detection and ranging (lidar) technology is now commonly used to map glacier surface elevations with a vertical accuracy better than 1 m on grids with a horizontal resolution of 5 × 5 m or better (Geist et al., 2005; Jóhannesson et al., 2013). The US Government’s Arctic DEM project has recently produced a high-resolution (2 × 2 m) DEM of the entire Arctic region (north of 60°N), including its glaciers, ice caps and the Greenland ice sheet, using optical images from the WorldView satellites.4 Plans have been developed to create repeat DEMs by that same project, which also covers the rest of the world’s glaciers and Antarctica.

3.3.2 Generating glacier outlines

To calculate the mass balance of a glacier, its area and hence its outlines must be known. Glacier area is defined as the spatial distribution of perennial ice at a certain point in time, typically measured in km² (see Table 3.3). For smaller glaciers and ice caps it is common practice to manually digitize the glacier outlines from georeferenced aerial photographs or satellite imagery (orthophotos) or using lidar intensity values (see, for example, Paul et al., 2002; Fischer et al., 2014; Andreassen et al., 2020; Linsbauer et al., 2021; see Figure 3.3).

For larger glaciers or regions it is recommended to use automatic or semi-automatic methods from optical sensors (Paul et al., 2009; Racoviteanu et al., 2009). The following description is mainly based on Raup and Khalsa (2010).

Definition. In remote-sensing studies aiming to delineate the outlines of individual glaciers, the following definition of a glacier has been used:

A glacier or perennial snow mass consists of a body of ice and snow that is observed at the end of the melt season, or, in the case of tropical glaciers, after transient snow melts. This includes, at a minimum, all tributaries and connected feeders that contribute ice to the main glacier, plus all debris-covered parts of it. Excluded is all exposed ground, including nunataks. An ice shelf shall be considered as a separate ice mass.

4 https://www.pgc.umn.edu/data/arcticdem/
It is stressed that neither this definition nor the one in Section 3.1.3 are intended to be used in any sort of legal context.

Glacier ID. Each glacier in the WGMS, WGI, GLIMS and RGI databases is assigned an identification number (Table 3.3). Glaciers can also have national IDs or other forms of local IDs.

WGMS ID: A numeric identifier.

WGI ID: A 12-character unique glacier identifier combining a 2-character political unit, 1-digit continent code, 4-character drainage code, 2-digit free position code and 3-digit local glacier code.

GLIMS ID: A 14-character identifier of the form: \(GnnnnnnEmmmmm[N|S] \). Here, \([N|S]\) means either North or South and nnnnnn is the decimal longitude to three decimal places in the range \([000000,359999]\). The number mmmmm, the decimal latitude to three decimal places, has the range \([00000,90000]\). It is recommended to select a location in the upper part of the ablation area of the glacier.

<table>
<thead>
<tr>
<th>Glacier name</th>
<th>WGMS ID</th>
<th>WGI ID*</th>
<th>GLIMS ID</th>
<th>RGI ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alphanumeric; up to 60 characters</td>
<td>Numeric code</td>
<td>Alphanumeric; 12 characters</td>
<td>Alphanumeric; 14 characters</td>
<td>Alphanumeric; 14 characters</td>
</tr>
<tr>
<td>GLACIER</td>
<td>2222</td>
<td>CH4012506003</td>
<td>G007880E45990N</td>
<td>RGI40-11.02789</td>
</tr>
</tbody>
</table>

Note: a https://nsidc.org/data/g01130

It is stressed that neither this definition nor the one in Section 3.1.3 are intended to be used in any sort of legal context.

Glacier ID. Each glacier in the WGMS, WGI, GLIMS and RGI databases is assigned an identification number (Table 3.3). Glaciers can also have national IDs or other forms of local IDs.

WGMS ID: A numeric identifier.

WGI ID: A 12-character unique glacier identifier combining a 2-character political unit, 1-digit continent code, 4-character drainage code, 2-digit free position code and 3-digit local glacier code.

GLIMS ID: A 14-character identifier of the form: \(GnnnnnnEmmmmm[N|S] \). Here, \([N|S]\) means either North or South and nnnnnn is the decimal longitude to three decimal places in the range \([000000,359999]\). The number mmmmm, the decimal latitude to three decimal places, has the range \([00000,90000]\). It is recommended to select a location in the upper part of the ablation area of the glacier.
CHAPTER 3. MEASUREMENT OF GLACIERS

RGI ID: A 14-character identifier of the form RGI-νν-rr.nnnnn, where νν is the version number, rr is the first-order region number and nnnnn is an arbitrary identifying code that is unique within the region. In general, the identifying code of each glacier, nnnnn, should not be expected to be the same in different RGI versions.

Note – if registered with WMO, a glacier would receive a dedicated WIGOS Station Identifier (WSI).

Tools and imagery. GIS tools and software are used to manually or semi-automatically/automatically delineate glacier outlines from maps, orthorectified aerial images, DTMs or satellite imagery. Satellite platforms providing freely available raw data for glacier mapping include Landsat (since 1972), ASTER (since 1999) and Sentinel-2 (since 2015). Automated methods for deriving glacier outlines have been developed by many researchers (for example, Paul et al., 2002) along with methods to derive the uncertainty.

Criteria for glacier outlines. Using the remote sensing definition given above, certain criteria are applied to determine which features should be included as part of a certain glacier.

The outline of a glacier should include:

– Ice bodies above the bergschrund (at the glacier head)
– Tributary glaciers flowing into the glacier
– Stagnant ice masses in contact with the glacier
– Debris-covered parts connected with the glacier

The outline should not include steep rock walls from which avalanches contribute snow accumulation to the glacier, nor areas covered by seasonal snow. An ice body detached from the glacier may contribute mass to the glacier through ice avalanches and it should be left to the analyst to decide whether it should be considered part of the glacier or not (Raup and Khalsa, 2010).

An ice cap or an ice field may contain several different ice-flow basins that form a continuous ice mass but do not exchange any ice between them. Such an ice mass can either be considered a single unit, or several units when the divides separating different basins can be determined.

A persistent problem in the mapping of many glacier outlines is the presence of seasonal snow along glacier margins, due to accumulation or deposits of blown snow (snowdrifts) or avalanche snow and incomplete snow depletion at the time of image acquisition. Images from the end of the ablation period (or dry period) should therefore be used for the mapping of glaciers with such lateral snowfields, and they should be disconnected from the main glacier (but identified) if they cannot be avoided.

GLIMS distinguishes between ice shelves – ice downstream of the grounding zone of two or more glaciers that is floating on ocean water – and ice tongues – floating ice extending from a single glacier. Ice shelves are considered as separate features whereas ice tongues are included with the glacier to which they are attached.

Polygons, segments and category attributes (see Raup and Khalsa, 2010). The glacier outline is in the form of a polygon that circumscribes the entire glacier. Features internal to the glaciers like nunataks are excluded using polygon “holes” or by producing outlines around them and labeling them separately. Snow lines,5 flowlines and glacial lakes can also be included.

Within GLIMS, the same GLIMS glacier ID is assigned to all polygons and segments associated with a particular glacier, that is, glacier outlines, centrelines and internal rock outlines.

5 The snow line on a glacier is defined as the line separating snow from ice or firn at any time t (Cogley et al., 2011).
Minimum size of a glacier. Satellite sensors and orthophotos available today allow very small ice bodies to be mapped (Fischer et al., 2014). The minimum size that can be studied will vary depending on the sensor being used (image resolution), the quality of the imagery (snow depletion) and the purpose of the study. Paul et al. (2016) recommend a size of 0.01 km2 as the minimum area for a glacier when using satellite sensors operating at 15–30 m spatial resolution. Leigh et al. (2019) point out that the minimum threshold can be lower when high-resolution imagery (<1 m) is used for mapping. However, ice masses smaller than 0.01 km2 might not be (flowing) glaciers but ice patches (see Figure. 3.1.(e)) and could be marked accordingly in the attribute table.

Uncertainty. The GLIMS glacier database allows the assignment of two uncertainty values for each outline of a glacier, the (i) global and the (ii) local uncertainty (Paul et al., 2009). Whereas (i) can be obtained from the metadata of the (satellite) image used, (ii) depends on glacier and image characteristics.

The uncertainty of outline delineation is higher for glaciers with debris cover or in shadow and for ice divides in flat accumulation areas. As a first step, it is recommended that a fixed accuracy value be applied (for example, the size of one or two image pixels) to all glaciers, to be improved on later whenever possible (Paul et al., 2009).

In one study comparing glacier areas generated manually by different analysts, relative area differences amounting to 3%–6% were found (Paul et al., 2013). When comparing the results of manual and automated generation of glacier outlines, several authors (for example, Paul et al., 2013; Andreassen et al., 2022) have found good agreement between the two methods (differences typically in the range of 1%–5%). Automatic analysis is better at detecting the smallest glaciers and at considering all rock outcrops, which manual analysts tend to leave out or overlook. On the other hand, manual corrections of automatic classifications may be needed to correctly delineate glaciers under debris cover or in shadow, and remove wrongly classified water bodies, snow fields, sea ice or ice on water.

Image selection. When possible, analysis of imagery from different years is recommended to separate seasonal snow from perennial snow or glaciers and to select the best possible images. In cases when glaciers are invisible due to local clouds, shadows or missing data (for example, striping of Landsat 7 images acquired after May 2000), it is also possible to add the missing parts from other images, maybe acquired under worse conditions.

3.4 THICKNESS AND VOLUME OF GLACIERS

3.4.1 Radio‑echo sounding to determine glacier thickness

Mass-balance data essentially reflect changes in the volume of glaciers and ice caps and thus a one-time determination of the total volume of a glacier being studied is desirable. Accurate determination of glacier volumes requires measurement of their surface areas and surveying of their thicknesses by radio-echo sounding, using equipment towed by vehicles (Björnsson and Pálsson, 2020), portable systems (for example, Mingo and Flowers, 2010) or airborne instruments (Lindbäck et al., 2018). Radar systems can also be used to trace internal reflectors within glaciers, investigate the nature of the ice–bed interface and detect subglacial and englacial water bodies (Plewes and Hubbard, 2001; Magnússon et al., 2021a).

The technique of radio-echo sounding in ice relies on the transmission and detection of electromagnetic waves at frequencies between 1 and 1 000 MHz. Frequencies in the range 2–10 MHz are suitable for sounding in temperate ice, whereas higher frequencies are applied on cold (polar) ice. Propagation of the radar signal is controlled by the relative electrical permittivity (ε_r) and the electrical conductivity (σ) of the ice (Plewes and Hubbard, 2001). Both parameters are affected by the presence of water and impurities. Permittivity can further be affected by anisotropy in the ice and by ice temperature changes.
The set-up of a typical radio-echo sounding experiment for use on temperate ice is shown in Figure 3.4. A snowmobile or some other vehicle tows two sledges, which are connected with a rope. The transmitter is placed on one sledge, the receiver on the other, and both are fitted with antennas. The simplest type of antenna, the dipole, is indicated in Figure 3.5. An oscillating electric current in the dipole generates the transmitted electromagnetic wave which is reflected by the bedrock (or by internal features in the ice). The receiver detects both the reflected wave and the direct wave transmitted along the surface.

Radio-echo sounding

Surveillance technique

\[c_{\text{air}} = 3 \times 10^8 \text{ m/s} \]

\[c_{\text{ice}} = 1.7 \times 10^8 \text{ m/s} \]

[Diagram of radio-echo sounding system]

\[T = \text{dt} + T' = \text{wave front travel time within the ice} \]

\[T' = \text{wave front travel time, recorded by receiver} \]

\[D = \text{depth} \]

\[a = \text{time delay} \]

\[c = \text{speed} \]

\[t = \text{time} \]

\[Z_b = Z_{\text{DGPS}} - D \]

Figure 3.4. A radio-echo sounding system consists of two main components: (1) the transmitter, and (2) the receiver. The transmitter sends out a brief burst of radio waves of a specific frequency. The receiver detects the radio waves from the transmitter and any waves that have bounced, or been reflected off, nearby surfaces. The receiver records the amount of time between the arrival of the transmitted wave and any reflected waves as well as the strength of the waves (measured as an AC voltage).

Source: Figure adapted from: Eyjólfur Magnússon, University of Iceland

Figure 3.5. Field set-up of a radio-echo sounding system. The transmitter with antennas is placed on the front sledge. The receiver and data logging computer are placed on the rear sledge. The sledges are connected with a rope and their distance is kept constant during measurement. Typical antenna length is 10 m for systems used on temperate glaciers. On glaciers that cannot be accessed by motorized vehicles, the sledges can be hand pulled. It is also possible to tow the two sledges side by side, keeping a certain minimum distance that depends on the system configuration.
For the simplest case of a point measurement with stationary receiver and transmitter, both placed at practically the same point on the glacier surface, and assuming further that a reflection from the bed originates from directly below the antennae:

\[D = 0.5 \cdot v_{\text{ice}} \cdot t \]

(3.1)

where \(D \) is the ice thickness, \(v_{\text{ice}} \) is the velocity of the electromagnetic wave in ice and \(t \) is the two-way travel time between the surface and the bed.

For the more general case, the wave travels between the transmitter and the receiver as indicated in Figure 3.4. In this case the vertical depth is determined as follows:

\[D = \left[\left(v_{\text{ice}} \cdot t/2 \right)^2 - (\alpha/2)^2 \right]^{1/2} \]

(3.2)

where \(t \) is the travel time between the transmitter and receiver for the wave reflected from the bottom and \(\alpha \) is the distance along the surface between the transmitter and the receiver. See further explanations in Figure 3.4.

A differential GNSS – often referred to as Global Positioning System (GPS) – receiver recording the position of the sounding profiles is placed on the receiver sledge and/or on the snowmobile, allowing exact determination of the location of the midpoint between the transmitter and receiver at any time.

Field operations. If the intention is to produce a high-resolution map of the bedrock topography beneath a glacier or ice cap, a sufficiently dense grid of profiles must be laid out. A horizontal spacing of 1 km between profiles is common, but denser networks are desirable for glaciers smaller than ~100 km². During sounding, traces should be recorded less than one-quarter wavelength apart to maximize resolution. A trace is a recording of the response to a single pulse of electromagnetic energy passing from the transmitter to the bedrock and back to the receiver. As an example, a 5 MHz radio-echo sounding system produces a wavelength of \(\lambda = c/f = 1.69 \cdot 10^8 \text{ m s}^{-1}/5 \cdot 10^6 \text{ s}^{-1} = 34 \text{ m} \), and thus traces should be recorded less than 8.5 m apart in that case. For accurate determination of the glacier thickness, the topography of the glacier surface must be known. This is achieved by differential GNSS profiling concurrent with the echo sounding. Since electromagnetic wave velocities vary between different glaciers due to varying thermal regimes, water content, debris and impurity concentrations and anisotropy, it is recommended to calibrate the thickness determined by the radio-echo sounding against other data (preferably direct borehole measurements), thereby determining the electromagnetic wave velocity for the glacier being investigated. A correction because of higher electromagnetic wave velocity in snow and firn overlying glacier ice should be applied when radio-echo sounding is carried out in the accumulation areas of glaciers and ice caps. Table 3.4 summarizes key data related to radio-echo sounding on glaciers.

Table 3.4. Technical specifications for radio-echo sounding systems on polar and temperate glaciers and ice caps

<table>
<thead>
<tr>
<th>Technical specification</th>
<th>Cold ice</th>
<th>Temperate ice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electromagnetic wave velocity in ice</td>
<td>1.53–1.72 × 10⁸ m/s</td>
<td>1.69 × 10⁸ m/s</td>
</tr>
<tr>
<td>Frequency range</td>
<td>30–800 MHz</td>
<td>2–10 MHz</td>
</tr>
<tr>
<td>Wavelength range</td>
<td>0.2–5.7 m</td>
<td>17–85 m</td>
</tr>
<tr>
<td>Dipole antenna length</td>
<td>0.2–1.6 m</td>
<td>5–20 m</td>
</tr>
<tr>
<td>Peak power</td>
<td>500–3 000 W</td>
<td>1 250–8 000 W</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>1–40 MHz</td>
<td>0.1–10 MHz</td>
</tr>
<tr>
<td>Maximum ice thickness</td>
<td>4 800 m</td>
<td>1 500 m</td>
</tr>
<tr>
<td>Vertical resolution</td>
<td>2.5–60 m</td>
<td><10 m</td>
</tr>
<tr>
<td>Surface positioning accuracy</td>
<td><1 m</td>
<td><1 m</td>
</tr>
</tbody>
</table>

Source: Plewes and Hubbard (2001), Table 3; Björnsson and Pálsson (2020)
Data processing. The graphic depiction of radio-echo sounding data involves plotting the travel time (y-axis) for each trace against location on the sounding profile (x-axis).

The following data reduction steps were adapted from recommendations published by https://www.stolaf.edu/other/cegsic/background/:

1. **Organizing and cleaning of field data.** This involves orienting profiles in the same direction and assigning surface coordinates to each trace.

2. **Performing static and elevation corrections.**

3. **Band-pass filtering of data to eliminate low- and high-frequency noise.**

4. **Along-track migration (in two dimensions).** The receiver can record echoes that do not originate directly below the radio-echo sounding system, thus data must be adjusted to better determine the positions of the reflectors.

5. **Interpreting and plotting the bed surface.**

3.4.2 Determination of bedrock topography and glacier volume

The first two-dimensional (2D) migration is applied across the dominant topography. On a valley glacier, the dominant topography is normally the valley itself, so profiles should be recorded in the cross-glacier direction (Welch et al., 1998). On an ice cap with complex bedrock topography, previous knowledge or inferences regarding subglacial landscapes should guide the direction in which profiles are laid out (Magnússon et al., 2021b). 2D migration assumes that (1) all reflecting surfaces are located along the profiles (that is, no reflections are recorded from surfaces to either side of the profile) and (2) all apparent reflector slopes used in migration are in the direction of the profile (Welch et al., 1998). These assumptions are rarely met, and thus a three-dimensional (3D) survey is necessary to resolve complex bedrock topography. This is achieved by recording closely-spaced radio-echo sounding profiles and using fully-3D migration routines to accommodate reflections from any location. Two-pass 2D migration can also be used (Claerbout, 1985; Yilmaz, 1987). A profile spacing of 20 m was used in targeted surveys on Worthington Glacier, Alaska (Welch et al., 1998), and on Mýrdalsjökull ice cap, Iceland (Magnússon et al., 2021b).

To convert two-way travel times of reflections to depths, the appropriate EM-wave velocity in ice (Table 3.4) is used. The bedrock reflectors are then digitized to create a map of the glacier bed. Reflectors can be exported as a list of coordinates \((x,y,z)\) in the appropriate geographic coordinate system. Cross-point statistics should be evaluated and data should be reviewed if any elevation mismatch in excess of 5 m is obtained.

The final product is a bedrock DEM obtained with Kriging interpolation of the radio-echo sounding data. Manual control of the resulting DEM is often necessary, to fill data gaps and to reduce artefacts due to shortcomings of 2D migrated radio-echo sounding data or due to Kriging interpolation. The resolution of the final bed-surface DEM depends on the profile spacing.

A map displaying glacier thickness can then be calculated by differencing the DEMs of the glacier surface and the glacier bed. Results should be compared with depths measured in boreholes reaching the bed, if drilling has taken place on the glacier. The total volume of the glacier or ice cap at the time of surveying is then obtained by summation over the entire DEM area.

3.4.3 Measurement error and uncertainties

The error in glacier-thickness measurements using pulsed radar systems stems from (i) the error in the thickness measured at a given point, and (ii) the error in thickness determination associated with the uncertainty in horizontal positioning (Lapazaran et al., 2016).
The error resulting from the first source (the measurement of thickness at a point), depends on the error in the radio-wave velocity, and the error involved in determining the bed reflection and hence the two-way travel time. The radio-wave velocity is higher in snow and firn than in ice, and thus the depth-averaged radio-wave velocity varies between the accumulation and ablation areas, due to variation in snow/firn thickness, density, water content and air content. It is, however, common practice to use a constant value for the velocity (Table 3.4), and the error is typically taken to be 1%–5% (Lapazaran et al., 2016). Errors in the determination of the two-way travel time can stem from difficulties in selecting the correct bed reflector from several possible ones, or from misinterpretation of an internal layer (such as ash layers) in the ice as bedrock. In addition, scattering from subglacial or englacial water bodies or water inclusions can prevent proper reflection from the bed, introducing error in the thickness determination. Moreover, in radio-echo sounding on valley glaciers, reflections from valley sides (out-of-plane reflections) can present problems for travel-time determination. Comparison of depths determined at crossing points of two or more sounding profiles helps to check consistency of the data and detect errors.

The uncertainty of horizontal positioning determination is on the order of a few centimetres if the positioning is obtained by differential GPS, and thus the error resulting from this source (positioning uncertainty) can be assumed to be negligible. However, this only applies if the distance between the midpoint between transmitter and receiver and the differential GPS on the towing vehicle can be kept fixed. For the configuration shown in Figure 3.4 (see Magnússon et al., 2021b), a horizontal accuracy in the midpoint position of <3 m is estimated.

The error in glacier volume determination from radio-echo sounding stems from the errors mentioned above and from the uncertainty in determining the glacier boundary and hence the glacier area (Martín-Español et al., 2016). Boundary errors can be due to debris cover or snow patches, and due to uncertainty in determining the exact positions of ice divides and calving fronts. Most importantly, however, the uncertainty in ice volume determination from ice thickness measurements depends on the coverage of profiles, and therefore the spatial extrapolation of ice-thickness over the entire ice body. As glacier ice thickness is often inhomogenous and only a certain number of direct measurements can be performed due to accessibility and other logistical limitations, extrapolation can lead to significant uncertainties in total estimated ice volume (see, for example, Andreassen et al., 2015; Grab et al., 2021).

3.4.4 Global-scale compilation of ice-thickness measurements

In 2014, the international Glacier Thickness Database (GlaThiDa) was launched by WGMS, with the support of IACS, as an effort towards assessing the total volume of the world’s glaciers (Gärtnert-Roer et al., 2014). In the first version, the focus was on gathering glacier mean and maximum thickness estimates from published literature. Versions 2 and 3 contain additional data on thickness measurements from glaciers on all continents, submitted in response to calls for data (Welty et al., 2020). The data submitted are derived from boreholes, seismic soundings, radar measurements and other geophysical studies. Archived versions of GlaThiDa are available from WGMS (https://gitlab.com/wgms/glaTHIda). It is recommended that scientists prepare their final ice-thickness point data using the same attribute fields as in GlaThiDa to simplify data submissions for later versions of GlaThiDa.

Ice-thickness data are valuable for calibrating and validating ice-thickness models (see, for example, Ramsankaran et al., 2018; Helfricht et al., 2019; Zorzut et al., 2020). Such models based on local thickness observations have become indispensable today to provide homogenous data sets for large-scale studies to investigate glacier dynamics and water resources (e.g. Lutz et al., 2014; Hock et al., 2019). The IACS working group on ice thickness estimation (2014–2019) performed intercomparison experiments on ice-thickness modelling validated with ice-thickness data (Farinotti et al., 2017) and provided an estimate for the ice thickness distribution of all glaciers in the world (Farinotti et al., 2019).
3.5 MEASUREMENTS OF GLACIER FRONT VARIATIONS AND LENGTH

3.5.1 Background

Measurements of changes in glacier front position have a long tradition in glacier monitoring, with many records starting at the end of the 19th century or early in the 20th century (Forel, 1895; Rekstad, 1902; Eythórsson, 1949). These front variations should preferably be measured in a direction that represents a central flowline along the glacier. This will reflect changes in the length of the glacier along a given flowline or centreline. The front-position records are therefore commonly referred to as length change records (see, for example, Purdie et al., 2014; Zemp et al., 2015; WGMS, 2019). Glacier length fluctuations are natural indicators of past climate change (see, for example, Leclercq et al., 2014) and can be used to extract a climate signal (Oerlemans, 2005). Glacier front position and length change measurements are considered a key variable in global glacier monitoring strategies (see, for example, Gärtner-Roer and Bast 2019). Length change series have been reconstructed over several centuries using drawings, paintings and photographs (Nussbaumer et al., 2011). Historical maps and end moraine positions can also be used to constrain changes in glacier length (see, for example, Weber et al., 2019; Hannesdóttir et al., 2020). Monitoring of a number of glaciers in an area is useful for filtering the influence of different glacier dynamics and geometries, and local meteorological conditions. Glacier front fluctuations and length change can also be derived from georeferenced aerial photos (orthophotos) or satellite data. The growing number of high-resolution satellite sensors with higher spatial and temporal resolution, such as Sentinel-2 (10 m) or Pléiades (0.5–2 m), makes it possible to measure all glaciers within a particular region. However, classical in situ front fluctuation data are still key to understanding past glacier fluctuations and to keeping methodological consistency.

3.5.2 Front variation measurements – field data

The front variation (in metres) is derived from annual or multi-annual measurements of the distance between the glacier terminus and fixed reference points such as cairns, painted rocks or bolts (Figure 3.6). The distances are preferably measured in the direction of the flowline (or parallel to it) and normal to the glacier perimeter. The line of measurement is given as a fixed direction (using an analogue or digital compass) or marked in the field using arrows.

Figure 3.6. (a) Measurement of the front position of Hellstugubreen in Norway. The labeled boulder is the reference point. (b) Digitized glacier outlines in Jotunheimen, Norway. Outlines are from orthophotos taken in 1966 and 2011. The background is the 1966 orthophoto. Length1 and length2 are flowlines used to calculate the length change from maps. Glacier IDs are from the Norwegian inventory.

Source: (a) Jostein Aasen. (b) Figure from Andreassen et al. (2020); reproduced with permission from the Journal of Glaciology
paint or additional cairns. One or more points along the glacier front are measured, and the observations are usually carried out at the end of the ablation season every year. Traditionally, the distance has been measured with a measuring tape providing accuracy within 2 m; nowadays a laser (electronic) distance meter is often used providing a measurement accuracy within 1 m. Differential GNSS measurement can also be used to record the position of a single point at a glacier front, or even the entire front, with accurate positioning (<10 cm). However, this should only be done when walking along the terminus is safe and easy. UAVs (drones) can also be used to generate orthoimages to map glacier outlines.

The accuracy of front-position measurements depends on the accessibility, which may become limited due to advance or retreat. In general, glaciers have different response times because of different slope, length and mass-balance gradients (see, for example, Zekollari et al., 2020). Glacier retreat can also be enhanced significantly when the glacier is calving into a proglacial lake, and such situations complicate measurements of front positions.

Glacier front-position measurements must sometimes be discontinued if the glacier terminus changes so that accurate measurements are no longer possible. This has been the case for several glaciers in Norway, in Iceland and in Switzerland (see, for example, Andreassen et al., 2020; Sigurðsson, 1998). Examples include retreat of the glacier front into terrain that is inaccessible or unsafe (for example due to quicksand or due to retreat up a very steep slope), or where debris cover makes the exact determination of the glacier boundary difficult.

Observations from maps and orthophotos can be used to prolong front variation records, fill in data gaps and homogenize/calibrate the series (see, for example, Andreassen et al., 2020; GLAMOS, 2020; Kurzböck and Huss, 2021). Glacier outlines from historical maps and orthophotos can be used together with automatically generated flowlines to extract the length changes. Often such flowlines need to be modified due to emerging nunataks or changes in the terminus form (Figure 3.6).

3.5.3 Front variation and length change reporting

Front variation and length change measurements are collected by WGMS and published in the series Global Glacier Change Bulletin (see, for example, WGMS, 2021). Reconstructed glacier front variations can also be submitted using standardized forms (Zemp et al., 2011). Details on data submission are given in the WGMS Attribute Description (2019). Figure 3.7 shows the front variations of seven glaciers on five continents displayed as cumulative length changes. The length of the records varies between 65 and 140 years.

3.5.4 Length change from other sources

In addition to orthophotos from aerial imagery, satellite data can be used for extracting frontal variation and length changes. Length changes are then typically calculated along one or several flowlines that can be manually digitized or automatically generated (see, for example, Kienholz et al., 2014; Maussion et al., 2020). A challenge with flowline methods is that the changes can be uneven along the terminus, and results will vary depending on the position of the flowlines. The so-called “box method” defines a box along the terminus with a gate perpendicular to the centreline of the glacier (Moon and Joughin, 2008; McNabb and Hock, 2014). Rapid developments in the field of remote sensing and machine learning are leading to new techniques for assessing change over the full terminus, in particular for marine-terminating glaciers (see, for example, Zhang et al., 2021).

Several studies have analyzed length change data based on data from multitemporal satellite inventories (for example, Fischer et al., 2014, Winsvold et al., 2014, Paul et al., 2020). Earlier studies showed that Landsat data of 30 m resolution are in good agreement with field data, apart from glacier tongues in cast shadow (Paul et al., 2011). However, in contrast to field observations, an accurate annual signal cannot be obtained with the 15–30 m resolution of optical satellites such as ASTER and Landsat. Because of the rapid retreat of many glaciers during the twenty-first century, new enhanced satellite sensors with higher spatial resolution often allow determination
of year-to-year changes in glacier length. Future sensors with higher resolution and free of charge imagery will enhance the possibility for more frequent and accurate measurements of glacier length changes using satellite data.

3.5.5 **Uncertainty**

Uncertainties in front variation and length change measurements involve the accuracy of the measurement itself and the representativeness of the points or lines used for the measurements. Front variation measurements in the field have an accuracy of within 1 m using a laser distance meter and within 10 cm using differential GNSS. For length change obtained from other sources it will depend on the spatial resolution of the image or sensor and the accuracy of the georeferencing. For both field data and remotely-sensed data an uneven terminus can result in highly variable results depending on the chosen line of sight or flowline. Front variation series should be regularly homogenized and recalibrated if needed using orthophotos and maps.

3.6 **MASS BALANCE TERMINOLOGY AND REPORTING SYSTEMS**

Standardized systems for mass balance terminology were described in “Mass-Balance Terms” (1969), Müller et al. (1970), Mayo et al. (1972) and Østrem and Brugman (1991). Definitions of key terms are given in Section 3.6.1 below, based on those synthesized from earlier work by Cogley et al. (2011). Note that definitions of key variables included in the WMO-WIGOS system have already been given in Section 3.1.5. The most important systems for reporting mass balance are outlined in Section 3.6.2.
3.6.1 **Mass balance terminology**

Accumulation (c). Includes all processes that increase the mass of a glacier (Figure 3.8). The main process of accumulation is snowfall. Accumulation also includes deposition of hoar, freezing rain, solid precipitation in forms other than snow, gain of windborne snow, avalanching and basal accumulation (often beneath floating ice). Moreover, internal accumulation can occur by refreezing of meltwater within the snowpack.

Ablation (a). Includes all processes that remove mass from a glacier (Figure 3.8). The main processes are melting and calving, but sublimation, loss of snow by wind transport and avalanching are significant on some glaciers. Ablation typically does not include basal or internal melting unless otherwise stated.

Accumulation zone. The part of the glacier or ice cap where accumulation exceeds ablation in magnitude, that is, where the cumulative mass balance relative to the start of the mass-balance year is positive (Figures 3.8 and 3.9). References to the accumulation zone indicate its extent at the end of the mass-balance year. The extent of the accumulation zone can vary strongly from year to year. The term accumulation area has the same meaning.

Ablation zone. The part of the glacier or ice cap where ablation exceeds accumulation in magnitude, that is, where the cumulative mass balance relative to the start of the mass-balance year is negative (Figures 3.8 and 3.9). References to the ablation zone indicate its extent at the end of the mass-balance year. The extent of the ablation zone can vary strongly from year to year. The term ablation area has the same meaning.

Equilibrium line. The boundary separating the accumulation zone from the ablation zone (Figures 3.8 and 3.9). At the equilibrium line the surface mass balance is zero at the end of a mass-balance year.

Equilibrium line altitude (ELA). The spatially averaged altitude of the equilibrium line.

Accumulation area ratio (AAR). The ratio, often expressed as a percentage, of the area of the accumulation zone to the area of the glacier (ice cap).

Figure 3.8. Schematic diagram showing the zones on a glacier, the equilibrium line and main mechanisms of mass gain and mass loss
Accumulation season. A time span extending from a seasonal minimum of glacier mass to a seasonal maximum (Figure 3.10). The accumulation season is the same as the winter season on most glaciers, which are of winter accumulation type. Special cases include glaciers of summer accumulation type and year-round ablation type, and glaciers that have more than one accumulation season during the year.

Ablation season. The time span extending from a seasonal maximum of glacier mass to a seasonal minimum (Figure 3.10). The ablation season is the same as the summer season on most glaciers, which are of the winter accumulation type. Special cases include glaciers of summer accumulation type and year-round ablation type, and glaciers that have more than one ablation season during the year.

Winter (mass) balance at a point \(b_w \). Represents the snow accumulation that will be left at the end of winter, but not the total accumulation because part of the snow may have been removed by sublimation, evaporation, wind scouring and melt events.

Summer (mass) balance at a point \(b_s \). Represents the mass loss between spring and autumn observations, consisting of (i) melting of snow and glacier ice in the ablation zone, and (ii) mass loss from the winter layer within the accumulation zone. For glaciers terminating in the ocean or in proglacial lakes, calving represents the component of ablation consisting of the breaking off of ice from the glacier margin into the lake or sea water, producing icebergs, or onto land in the case of dry calving.

Annual mass balance of a point \(b_a \). The change in balance during one mass-balance year, which can be expressed as the algebraic sum of winter balance and summer balance:

\[
b_a = b_w + b_s
\]

(3.3)

The annual mass balance may be positive or negative depending on conditions in the particular balance year. All values are given in metres of water equivalent (m w.e.).

Figure 3.9. SENTINEL-2 image of the 810 km² Hofsjökull ice cap, Iceland, taken at the end of summer 2019. In the ablation zone, winter snow cover has gradually melted away during summer, exposing glacier ice below. The snow line delineates the lower boundary of the snow-covered area at any time. For the case shown here the equilibrium line coincides with the position of the snow line at the end of the melting season. Its altitude (ELA) varies with climatic conditions. Hofsjökull altitude span: 650–1 790 m, ELA = 1 300 ± 200 m.

Source: ESA (Copernicus Sentinel data 2019)
For the entire area of a glacier or ice cap (or a specific ice-flow basin), capital letters are used to designate mass balance:

\[B_w = \text{winter balance} \]

\[B_s = \text{summer balance} \]

\[B_a (\text{or } B_n) = \text{annual balance (or net balance)} \]

3.6.2 Mass-balance reporting systems

Typical cumulative mass-balance change throughout the glaciological year at a single point on a glacier is depicted in Figure 3.11. The most commonly used reporting systems are outlined below.

Stratigraphic system. In this system, determination of mass balance is based on the identification of successive annual minima, and for seasonal balances annual maxima as well, in the mass of the glacier/ice cap. The duration of the mass-balance year varies in this system. In practice, it is difficult to apply the stratigraphic system because field measurements are
typically conducted only twice a year and the exact dates of annual minima and maxima are not known in advance. Moreover, maxima and minima may not occur at the same time at all elevations on a glacier or ice cap.

Fixed-date system. In this system the annual balance is calculated between fixed dates each year, typically 1 October in northern hemisphere settings. Other dates will obviously apply in the southern hemisphere and in high-mountain areas near the equator. If the autumn survey is made earlier or later than 1 October, mass-balance models should be employed to correct for melting and/or snow precipitation that may have occurred between 1 October and the date of the field measurement. Whereas the fixed-date system allows consistent comparison between individual years and individual glaciers, corrections to the actual measurements are always required, leading to increased uncertainty. The approach used should be documented and be reproducible.

Floating-date system. In this system the dates of the surveys determine the mass-balance year and the accumulation and ablation seasons. The winter balance, as measured during the spring field survey, equals the total water equivalent of all snow deposited at the measurement site since the previous year’s autumn expedition. Snow that may have fallen before that survey is counted as a positive contribution to the previous year’s summer balance, and likewise for snow that falls before the end of the current mass-balance year in this system.

Combined system. This system normally combines the stratigraphic system with either the fixed-date system or the floating-date system (Mayo et al., 1972). For example, the successive mass-balance minima indicated in Figure 3.11 can usually be inferred from stratigraphic observations if visits are made shortly after the occurrence of the stratigraphic minima. Most often, the users of this system include snow that has been deposited prior to the autumn visit with the winter balance of the following winter, but do not attempt to correct the seasonal balances for the snow that may be deposited after the spring visit.

![Figure 3.11](image-url) Cumulative glacier-wide mass balance over one year for a glacier in the Swiss Alps based on modelling constrained with seasonal observations. The duration of the observation period in the floating-date system, in the fixed-date system (hydrological year) and in the stratigraphic system is indicated both for the entire year and the winter period, and corresponding mass balances are given. Note that the start of the winter observation period is defined stratigraphically as measurements were based on snow probing down to the last summer’s horizon, thus referring to the combined system (Mayo et al., 1972).
For a detailed treatment of the different reporting systems and variables used to calculate winter, summer and net mass balance in each case see pages 129–140 and 149–152 in Østrem and Brugman (1991), and the discussion of time systems for mass-balance measurements in Cogley et al. (2011).

3.7 SURFACE ACCUMULATION MEASUREMENTS

In this section, snow depth refers to the thickness of the layer of snow deposited on the surface of a glacier, usually at the end of winter, often at fixed locations where ablation stakes are placed every year. In the accumulation zone, the summer surface forms the base of the winter layer, which is deposited on top of older annual layers that have turned into firn. In the ablation zone, the winter layer covers glacier ice. The surface accumulation at a point location (stake location), that is, the water equivalent of the snow accumulated over the winter, is determined as the product of snow depth and bulk density of the snow accumulation at that location. The basic methods for measurement of these two quantities are described in the present Volume, Chapter 2. There, definitions and more detailed descriptions are given as well as discussions on sources of errors. The description in this section refer to measurement procedures on glaciers.

3.7.1 Manual measurements of snow depth and density on glaciers

Measuring snow depth with a graduated device (see Chapter 2, 2.4 of Volume II of the present Guide). A graduated device (snow probe) is pushed vertically through the snow layer until the base surface or reference level is detected. On glaciers, the base surface or reference level is either the ice surface (within the ablation zone) or the previous year’s hardened summer surface (in the accumulation zone). Care must be taken when measuring snow depth because ice layers up to several cm in thickness may be present in the snow, due to warm spells that have caused surface melting. Best practice is to probe close to a site with known snow depth, such as a snow pit or the location of a core with a positively identified summer surface, to get a feeling for the local snowpack. Then, spatial variability can be defined using the probe based on the known local snow depth.

Snow depth on glaciers can be highly variable, even within short distances, because deposition is greatly affected by topography and wind. To represent spatial variability of snow depth at one particular stake location, snow depth should be measured at 5–10 locations in a 20 × 20 m area surrounding the stake (Østrem and Brugman, 1991). In addition, snow depth probing along the flow direction of a glacier and perpendicular to it will yield information on the snow deposition pattern on the glacier. This allows for corrections if snow depth at stake locations turns out not to be fully representative for the glacier. The probing density per unit area should be determined for each glacier based on local conditions and logistical constraints.

Measurements in snow pits. The digging and sampling of snow pits on snow-covered ground to determine SWE is described in Chapter 2, 2.4 of Volume II of the present Guide. On glaciers, sampling in snow pits can be useful to obtain accurate determination of snow depth and bulk snow density and hence of surface accumulation. The pit should be dug not more than 10 m from the ablation stake location and density measurements should be done as soon as possible after digging. The digging of snow pits deeper than 2 m, however, is very time consuming.

Snow core drilling. Coring augers are widely used to penetrate the winter snow layer at selected locations on glaciers and ice caps (Talalay, 2016; Figure 3.12). Mostly, augers connected with extensions are used, but small versions of ice core drills, connected to a wire that is wound onto a winch, can also be used. The length, diameter and mass of each core piece is measured, yielding its density and water equivalent. Summation then gives the point accumulation above the previous year’s summer surface (accumulation zone) or above the glacier ice (ablation zone). The uppermost part (typically 20–50 cm) of the snowpack is often loose, and will degrade as the core is pushed out of the coring tube. This problem is circumvented by sampling the loose top layer with a cylinder in a shallow pit, using methods described in the present Volume, Chapter 2, 2.4.1. This sampling is done as close to the drill hole as possible. After each coring run,
the depth of the borehole should be measured with a graduated tape measure and compared with the total core length at that depth. This allows correction of the core length in case a core piece has been lost. The density of a lost core piece can be estimated from the densities of pieces immediately above and below.

Determining the depth of the summer surface (Figure 3.13) and hence of the winter layer involves studying the core stratigraphy to look for a transition from fine-grained winter snow to relatively coarse-grained firn that underwent densification and metamorphism during the previous summer. An ice layer formed by melting and refreezing is sometimes present at the summer surface and windblown dust from nearby deserts and mountain sides is often a clear indicator of the end of summer, even on large ice caps. Within dry snow, depth hoar layers formed by sublimation and growth of coarse crystals may indicate a summer surface. In case a mass-balance stake is present at the measurement site, the last summer’s surface layer can also be marked with ochre or sawdust spread out on the previous year’s surface at a defined distance from the stake. This layer can be easily detected in a snow pit or a snow core (Figure 3.14). The latter method allows unambiguous determination of the depth of the winter layer and clearly defines the period of the sampling. This approach is especially useful in high-elevation accumulation areas, and in regions with reduced seasonality, where the summer surface can be difficult to detect.

The water equivalent of the winter accumulation is obtained by adding the water equivalent of each core piece between the spring surface and the previous year’s summer surface. The calculation of the winter balance depends on which time system is used (Section 3.6).

Determining accumulation from crevasse stratigraphy. In particular climatological settings with a clear seasonality, several annual accumulation layers may be clearly identifiable in the walls of large crevasses (Figure 3.15). This makes it possible to measure the depth of the uppermost winter layer and estimate the annual balance also for earlier years (using direct measurements or realistic estimates of densification with depth at each location). This approach is easy and fast as it does not require any measurement gear. Nevertheless, results on snow accumulation are less accurate as the attribution of visually detectable horizons to individual periods can be ambiguous. Furthermore, snow depth in the region of large crevasses might not be representative due to wind redistribution effects. Carefully choosing crevasses that have opened after the accumulation season ended partially mitigates the problem of wind redistribution, but ablation rates may be affected as well. Calibration of these factors can be achieved by probing beside a crevasse and then progressively further away from the crevasse.
Figure 3.13. A 117 cm long core drilled through fine-grained winter snow in the upper part of the winter layer (top panel). No specific stratigraphic features are observed in this core. The previous year’s summer surface, containing visible dust and displaying a change from fine- or medium-grained winter snow to coarse-grained firn from the previous winter (bottom panel). Location: Hofsjökull ice cap, Iceland (1 790 m elevation).

Source: Thorsteinn Thorsteinsson

Figure 3.14. Measurement site in the accumulation zone of a Swiss glacier. The late-summer surface is marked by sawdust.

Source: Matthias Huss
CHAPTER 3. MEASUREMENT OF GLACIERS

71

Sources of error. In the accumulation zone, determination of the vertical thickness of the winter layer relies on the accurate identification of the previous year’s summer surface. However, stratigraphic features characterizing the summer surface (ice layers, windblown dust, transition to coarser and denser firn) are not easily detected in snow cores (or in pit walls) in all years, especially if several meltlayers have been formed during warm autumn spells. When snow depth is measured with a graduated device, visual inspection of the summer surface is not possible and the operator must therefore rely on experience in detecting the difference in hardness at the lower boundary of the winter layer.

During core drilling, sections of the core are sometimes lost if core catchers do not function properly or if drilling is taking place in snow at the melting point. This core loss can be accounted for by measuring the borehole depth at the end of each drilling run and comparing with the accumulated core length. In the density measurements, errors arise from uncertainty in: (i) length of individual core pieces (up to 5% if core breaks are skewed); (ii) diameter of cores (up to 3%) and (iii) mass of cores (normally <1% if precision weights are used, but may become larger if weighing occurs under windy conditions). In most cases, a combination of stratigraphic observations and density measurements allows determination of the water equivalent of the winter layer with an error of less than 10% (Geibel et al., 2022). In the ablation zone, the error is reduced to ~3% because the winter layer is underlain by solid glacier ice, which makes detection of its lower boundary unambiguous.

Figure 3.15. Determining accumulation from crevasse stratigraphy

Source: Matthias Huss
3.7.2 Snow-depth measurements with ground penetrating radar techniques

The use of GPR to determine snow depth is becoming common practice on glaciers and ice caps. GPR systems can be towed by personnel on skis, by snowmobiles or other vehicles and even airlifted by helicopter (Kohler et al., 1997; Machguth et al., 2006; Sold et al., 2013, 2016; Bauder et al., 2018). The basic principle is the same as for radio-echo sounding (see Section 3.4.1), but a higher frequency must be used (500 MHz–1.2 GHz). The frequency will depend on the snow depth and the expected detail in the internal layering. The sampling frequency will vary with the speed of the instrument, but typically one measurement of snow depth is obtained for every 0.4–2.0 m traversed. The method has the major advantage of producing essentially continuous transects of snow depth as measured perpendicular to the snow surface – 500–2 500 measurements on a 1 000 m transect – whereas only 1–10 measurements are typically obtained with snow coring or probing. Moreover, up to 100 km of GPR profiles can be obtained in a single day under optimum conditions. This will in most cases greatly increase information on the distribution of accumulation on the glacier under investigation. The layout of a measurement grid on a particular glacier or ice-flow basin and the spacing between profiles will depend on the size of the glacier (or ice cap) and on logistical constraints.

Accurate interpretation of GPR data relies on comparison with data on snow depth collected in snow cores and in snow pits. Such a comparison must be made during each measurement campaign, to ensure that the reflector associated with the previous year’s summer surface (in the accumulation zone) is correctly interpreted. The in-situ data are also required to calibrate the radar wave velocity (McGrath et al., 2015, 2018).

The electromagnetic wave velocity in snow is typically around 2.1×10^8 m/s (Annan et al., 1994) and may vary between years and campaigns due to variations in snow density, liquid water content and other parameters. Thus it is recommended to calibrate snow depth inferred from GPR data against direct measurements by snow coring or probing. In a plot of the snow depth determined by coring or probing versus the one-way travel time of the electromagnetic wave traveling vertically between the surface and the lower boundary of the winter layer, the velocity equals the slope of the line obtained (Figure 3.16). Data from the entire elevation span of the glacier being investigated should be included.

\[
2H = V \cdot T \quad \Rightarrow \quad H = \frac{1}{2} \cdot V \cdot T
\]

Figure 3.16. (a) A snowmobile towing an IceMap GPR system placed in a toboggan. The transmitter, receiver and GPS are placed in a single unit (upper left corner). The wave travels a relatively short distance and the horizontal component of travel can be ignored. Wireless transmission allows control of the GPR from a laptop placed in front of the driver’s seat. (b) Velocity calibration on Hofsjökull during the spring expedition in 2015. Snow depth determined by coring at 28 locations is shown on the y-axis and the measured travel time on the x-axis. The slope of the best-fit line ($r^2 = 0.86$) is the average velocity in this year’s winter layer, 0.212 m/ns = 212 m/μs.

Source: Thorstein Thorsteinsson (2016)
CHAPTER 3. MEASUREMENT OF GLACIERS

3.8 SURFACE ABLATION MEASUREMENTS

3.8.1 Ablation stakes on glaciers and ice caps

The term *ablation* on a glacier or ice cap refers to the amount of melting that has occurred at a particular point in time. It is measured on stakes or wires placed in snow, firn or ice, and the result at each location is given in m w.e.

Ideally, ablation stakes should be distributed uniformly so that ablation on the entire glacier or ice cap is represented. An ideal distribution pattern is, however, not always possible due to crevassing and other constraints, depending on the size and shape of the glacier/ice cap being measured. For valley glaciers, a central stake profile along the long axis of the glacier is ideal, with transverse stake profiles at regular intervals. On an ice cap, the stake network should be designed to capture the main topographic gradients across the ice cap. The stakes should to the extent possible be placed at regular elevation intervals (Figure 3.17).

Stake types. Aluminium tubes have been extensively used in mass-balance measurements (Figure 3.18). The optimal dimensions are: length 4–6 m, outer diameter 3–4 cm and wall thickness 3–4 mm. The stakes must have sufficient mechanical strength to withstand stresses resulting from riming, strong winds and ice shear. Stakes 2–3 m long can be coupled together with a 30–40 cm aluminium bar sized to fit tightly inside the two stakes. Such couplers can also be used to extend stakes that are intended to stand through the winter. PVC tubes have also been used in ablation areas with good results (Geibel et al., 2022). PVC tubes with a diameter of about 2 cm are used. Bamboo stakes with wire connections between individual 1–2 m segments have been used in mass-balance measurements at high altitudes, where all gear must be carried onto the glaciers (Figure 3.19). Bamboo stakes are easily available, light, strong, weather resistant, inexpensive, and have low thermal conductivity (Kaser et al., 2003).

Stakes should be placed at the same position every year to compensate for ice motion. A GPS device should be used to ensure horizontal position accuracy within ±5 m. In the accumulation area of some glaciers, stakes from the previous year are extended every year by adding a new stake on top. The extension is typically 2 m long.

At stake locations in ablation areas where aluminium stakes with a length of 4–6 m cannot survive the summer due to high melting rates, steel wires may be inserted into boreholes.

![Figure 3.17.](image)

Figure 3.17. (a) Ablation stake network (open and filled circles) on the Austfonna ice cap, Svalbard. The network captures the gradients across the summit (N–S) and along the ice divide trending WSW–ENE. (b) Distribution of stake locations on a mountain glacier, the Jamtal Ferner, Austria.

Source: (a) Schuler et al. (2007); (b) Fischer and Markl (2009)
Figure 3.18. Placing a 6 m aluminium stake in a borehole drilled by a snow corer

Source: Thorstein Thorsteinsson

Figure 3.19. Inserting lightweight bamboo stakes into a borehole at ~5 500 m elevation on Rikha Samba Glacier in Nepal. Short (1–2 m) sections must be connected before deployment in the borehole, using either a rubber tube, a metal sleeve or a wire connection (Kaser et al., 2003).

Source: Photo by T. Gurung, provided by G. Silwal, International Centre for Integrated Mountain Development (ICIMOD)
The wire will freeze solid in the ice. The upper end should be tied to a tetrahedron (wood or metal) or some other structure (Figure 3.20). An orange-coloured plastic flag can be fastened onto the structure, making it easier to locate during summer and autumn. Note that readings are unreliable if the cable is not frozen into the ice. Alternatively, systems with flexible stake elements connected with a chain may be used in such cases.

3.8.2 Drilling equipment

Several types of snow coring systems are available from commercial companies. Typically, the drill head has two cutters and during rotation the cuttings are transported upward by the spiral visible in Figure 3.12. The cuttings enter the holes on the core barrel and collect above the core, which can reach a length of 130 cm but is more typically 60–100 cm long (depending on conditions) when a 2 m core barrel is used. A shorter version (1 m) of the core barrel can also be used. Individual extensions are 1–2 m long, and coring to a depth of 15–20 m is possible. The drill is powered with a handheld pipe threader connected to a small (1 kW) generator (Figure 3.12).

For drilling into glacial ice, a steam drill or a handheld power drill is commonly used (Figures 3.21–3.23). Manual drilling is also possible (Østrem and Brugman, 1991). In the steam drill system, up to 10 l of water are poured into a pressure boiler powered by propane gas. The steam enters a 10–15 m rubber hose and then a drill system that is 1.5 m long and 3.5 cm wide. The drill shown in Figure 3.21 (a) can produce a 10 m borehole in less than 1 hour. This type of drill must be transported with a snowmobile or some other vehicle.

A smaller, portable steam drill that can be carried by one person to inaccessible locations is shown in Figure 3.21 (b). Handheld augers, powered with an internal-combustion engine or electric drill (Figure 3.22) provide a faster way to drill into ice. Augers measuring 1 m long and 5 cm in diameter can be connected to each other, allowing drilling to 10 m depth or deeper for placement of stakes or wires. Care should be taken when removing the auger from the hole once it is completed. Instead of taking out several flights at once it is recommended to dismantle them one by one while one operator secures the remaining flights.

3.8.3 Stake placement and readings

In the accumulation area, stakes are sometimes placed in spring in the boreholes produced during drilling of cores through the winter layer (Figures 3.12 and 3.18). The summer balance
is then obtained from stake readings. Ideally, the stake will be placed with the lower end in the previous year’s summer surface. This ensures that readings from the stake reflect thinning of the winter layer during the summer; a stake placed with the lower end higher up than the summer surface will record only a part of the thinning of the winter layer. If the borehole reaches deeper than the summer surface, drilled snow cores can be put back into the hole and compressed and packed thoroughly with the stake until its lower end is level with the summer surface.

Metal stakes without support can sink into the firn; to prevent this, a 15–20 cm wooden plug should be inserted into the lower end. The diameter of the plug should be similar to the stake diameter. A piece cut from a plywood plate with a diameter larger than the stake can also be used for stake support.

It should be kept in mind that autumn snowfall can bury a stake that would otherwise be visible during an autumn visit. To make it easier to find the stake, a RECCO reflector can be fastened.

Figure 3.21. (a) A “hot-point drill” using steam produced in a pressure boiler, heated by propane. A 12 m insulated rubber hose delivers steam to the drill stem, which is fitted with an exchangeable nozzle. The narrow, red hose supplies the propane gas to the burner. At a steam pressure of about 6 atmospheres, this drill penetrates 5–10 m of ice per hour. (b) A portable steam drill in operation.

Source: (a) Thorstein Thorsteinsson; (b) Matthias Huss

Figure 3.22. Drilling a hole with a handheld power drill

Source: Matthias Huss
onto the stake top, and this can be found with a detector. The active component in the reflector is a small electronic transponder with a copper aerial and a diode. The portable (<1 kg) detector transmits a highly directional radar signal on the 800 MHz frequency band. This signal is received by the transponder, which reflects it toward the detector. A beeping sound from the detector indicates that the reflector has been located. The maximum range of the detector signal is estimated to be 20 m in snow, but this is dependent on snow conditions and may decrease in wet snow (Grasegger et al., 2016). It should be ensured that no metal items are within the search area and other RECCO reflectors (which may be included in personal gear) must be removed beforehand.

In the accumulation area, 6 m stakes drilled during spring are normally left so that the top is 50–150 cm above the snow surface (Figure 3.23). In many settings, thinning of the winter layer during summer typically increases their height above the surface by 1–2 m. The risk of aluminium stakes bending over due to the weight of rime is fairly low if the stake top does not reach more than 2 m above the surface, and in that case they are not likely to disappear below autumn snowfalls prior to the autumn visit.

In other settings stakes are placed during autumn and readings obtained in the following autumn yield annual balance. In such cases it is necessary to place the lower end of an ablation stake deep enough to ensure stability also for potential extreme conditions in the coming year. In addition, the freezing of seasonal snow onto the stake can push the stake downward as the snow compacts. This risk is reduced if stakes are placed with the lower end at 3–4 m depth in older firn. Best practice is to use thickness and density measurements from cores down to a marked horizon for both winter and annual balance, rather than to rely only on measurements from ablation stakes (see Figure 3.24).

Stakes should be labeled each year, to minimize the risk of erroneous readings in case stakes from previous years survive summer melting. This is particularly important near the equilibrium line, where stakes can survive several years. All readings should be given to the nearest cm.

Figure 3.23. Positioning of stakes in the accumulation area during spring. If possible, stakes are placed so that their lowest part is near the base of the winter layer (that is, at the previous year’s summer surface). Such placement is assumed here, and typical density values are indicated. (a) A typical change over the summer. The winter layer decreases in thickness due to some melting and a gradual increase in density. As a result, the stake top is 1 m higher above the surface at the end of summer. (b) At the highest locations, very little melting will occur and snowfall will continue throughout the summer, resulting in a net positive summer balance and thus in a reduced stake height above the surface.

More information is available on the manufacturer’s website at https://recco.com/technology/.
In the ablation area stakes may be placed so that the stake top is below the surface at the beginning of summer, because of the relatively high levels of melting. Stakes should be supported with a wooden plug at the lower end. If the drilled hole is deeper than the stake length, another stake must be used to press the stake down to the bottom of the hole. The starting position of the stake top relative to the surface can be measured with a measuring stick, or by lowering another 6 m stake onto the top of the first one to determine its depth (Figure 3.25).

Figure 3.24. Positioning of stakes in the accumulation area during autumn. In this case the lower stake end must be placed ~2 m below the summer surface. The stake top may in some cases be visible above the surface in spring, in other cases not. Autumn readings yield annual balance.

Figure 3.25. Positioning of stakes in the ablation area. (a) At the upper limit of the ablation area, that is, at the equilibrium line. Exactly the amount of snow that fell during the winter melts away during the summer. (b) In the lower part of the ablation area. Because of the high level of melt during summer, the stakes must be placed with the top at a depth of several meters, so it does not melt out completely. Here, 1 m of winter snow and $2 + 3 = 5$ m of ice melt during the summer.

In the ablation area stakes may be placed so that the stake top is below the surface at the beginning of summer, because of the relatively high levels of melting. Stakes should be supported with a wooden plug at the lower end. If the drilled hole is deeper than the stake length, another stake must be used to press the stake down to the bottom of the hole. The starting position of the stake top relative to the surface can be measured with a measuring stick, or by lowering another 6 m stake onto the top of the first one to determine its depth (Figure 3.25).
When 6 m stakes are used, high levels of ablation can cause the stake to stand with the top 4–5 m above the surface at the end of summer, making it difficult to reach the top with a measuring stick. This problem is circumvented by placing a tape marker in the middle of the stake during placement in spring. In the autumn, the distance from the ice surface to this marker is measured and 3 m added to obtain the stake height above the surface. If the surface around the stake is uneven, a rod can be placed on the ice surrounding the stake, resting in a direction perpendicular to the ice flow. The lower base of the rod then defines the ice surface.

The difference between spring and autumn readings of the stake top height relative to the ice surface yields the melting that has occurred during the summer. Example: The stake top is 3.2 m below the ice surface in spring and 2.6 m above the ice surface in the autumn. Thus $3.2 + 2.6 = 5.8$ m of glacier ice has melted during the summer, which equals approximately $0.9 \times 5.8 = 5.2$ m w.e. (given a density of ice of 900 kg m$^{-3}$). Snow on top of the ice during spring must be accounted for separately in the ablation calculations and its depth must be measured with methods outlined above. If the floating-date system is used to calculate mass balance, snow from snowfalls that occurred prior to an autumn expedition should be measured and counted as a positive contribution to the summer balance.

In the accumulation area, part of the winter layer will be lost by ablation. In addition, compaction will occur due to densification. Thus the difference between stake readings during spring and autumn will give information about the thinning of the winter layer due to both ablation and compaction. The ablation (mostly due to melting) can be determined if the mean density of that part of the winter layer that remains in autumn is known. The density can be measured in snow cores or in pits. The range of mean densities at the end of summer is normally not large on a particular glacier, and values between 450 and 600 kg m$^{-3}$ have been reported from different locations on temperate glaciers, depending on altitude and snow thickness (Andreassen et al., 2016a; GLAMOS, 2020; Geibel et al., 2022). When the density has been determined, the water equivalent of the remaining part of the winter layer can be calculated. The summer ablation is found by subtracting that value from the water equivalent of the winter layer at the end of winter.

3.8.4 Autonomous ablation measurements on glaciers

Automated weather stations (AWSs) have been used in glacier research for decades, with the main focus on unraveling the components of the surface energy balance (Fausto et al., 2021 and references therein). The individual meteorological fluxes are computed to reproduce the measured surface changes.

On glaciers, both snow accumulation and ablation and ice ablation must be considered when analyzing surface changes. While techniques and methods for automated measurements of snow depth and SWE are covered in general in Chapter 2, 2.3.2 and 2.4.2 of Volume II of the present Guide, we focus in this section on glacier-specific methods for measuring ice ablation. Typically, stand-alone devices that often are connected to AWSs are operated for this purpose.

Glacier movement means that for climatological interpretation, repositioning of the AWS will sometimes be necessary. This is, however, very site specific.

The devices presented in this section allow for ablation over several melt seasons to be recorded automatically without major maintenance efforts; however, the length of operation without major maintenance efforts depends on the drill hole depth and the ablation rate. Complementing the data produced by these devices with measurements of snow depth and determination of SWE is useful in the context of mass-balance studies.

Pressure transducers. One way to measure ice ablation directly is to deploy a hose with a pressure transducer in a hole drilled into the ice using a mechanical drill or steam drill. The hose is filled with an antifreeze liquid and connected to an AWS. For measurement to be successful, it is necessary to concurrently measure air pressure to remove the signal of air pressure fluctuations from the actual surface-lowering signal. With surface elevation change due to ablation, the distance between the AWS and the pressure transducer...
at the bottom of the hole is reduced and the hydrostatic pressure from the vertical liquid column decreases. Figure 3.26 gives a schematic representation of the concept taken from Fausto et al. (2012). After complete meltout of the pressure transducer it can be redeployed at the same site. Pressure transducers are widely used in polar regions and at high-altitude glacier sites (see, for example, Fausto et al., 2021).

(b) Draw-wire sensors. A hitherto little used concept is the deployment of a draw-wire sensor. The principle is measuring the linear displacement of a steel wire that has been lowered into a borehole drilled with a steam or power drill (Figure 3.27). When the surface is lowered, the wire winds around a spring-loaded spool. Hulth (2010) proposes an application for glaciers, and currently the concept is being deployed at other sites (see, for example, van Tiggelen et al., 2020).

Figure 3.26. Schematic representation of a pressure transducer assembly attached to an AWS

Source: Fausto et al. (2012); reproduced with permission from the Journal of Glaciology

Figure 3.27. Schematic diagram of ablation measurements with a draw-wire sensor. A weight is attached to the end of the wire and fixed in the ice. The instrument registers relative surface elevation change, Δh, in time, t, due to net ablation.

Source: Hulth (2010); reproduced with permission from the Journal of Glaciology
(c) **Camera observing stake.** Another concept to automatically observe ablation in near-real time is the use of an automatic camera observing a mass-balance stake (Landmann et al., 2021). A solar-powered camera is mounted on a tripod sitting on the ice surface, which is loosely attached to a mass-balance stake (Figure 3.28). The system is lightweight (around 2 kg total) and can easily be deployed with conventional mass-balance stakes. If the camera is mounted on a separate, stake fixed about 5 m from the mass-balance stake, the system is also able to observe snow accumulation during the winter season. Readings of the ablation rate based on the pictures are either performed visually or supported by automated tools using image processing (Sold et al., 2021).

3.8.5 Sources of error and uncertainties

Sources of error and misinterpretation can occur with all these methods. For the pressure transducer, the hose has to be filled with sufficient antifreeze to ensure that the membrane of the sensor does not get impacted by brittle failure. Furthermore, a pressure correction with the air pressure has to be performed to derive relative pressure changes due to ice-surface lowering instead of the sum of air pressure changes and ice-surface lowering (Fausto et al., 2012).

For draw-wire sensors, one challenge is the physical set-up and the requirement of a stable structure that can sustain the rather bulky sensor. If the structure moves and the wire does not enter the hole vertically, some artefacts and unrealistic surface changes can occur.

Along the same lines, camera-based measurements require a set-up that prevents significant tilting of the structure, such that the target stake remains visible in the footage.

Fausto et al. (2012) estimate that the accuracy of ablation values obtained with pressure transducers is comparable to the accuracy from sonic ranging, and a temporal drift of 1.6% over a 4-year period is given. For draw-wire sensors, Hulth (2010) estimates an absolute error of around ±10 cm for the measurement range of the sensor. Errors on short timescales (days) are assumed to be at least one order of magnitude smaller. The automated cameras yield uncertainties of ±1.5 cm per day (Landmann et al., 2021).
3.9 **CALCULATING MASS BALANCE**

3.9.1 **Methods to display and calculate mass balance**

When winter and summer balances have been calculated at each stake location, the data are used to obtain the mass balance of the entire glacier. The profile and contour methods are commonly used to plot and analyse mass-balance data. Statistical approaches and model-based extrapolation are also used.

Profile method. This method involves plotting the point data on winter, summer and annual balance versus elevation. This is often suitable for individual glaciers or for separate ice-flow basins on ice caps. Mass-balance values representative for each 100 m (or narrower) elevation band are used together with data on the glacier hypsometry – the distribution of area with elevation – to calculate the volume added to or lost from each elevation band. The total volume added to or lost from the entire glacier is then obtained by summation and divided by the total area to yield the average water equivalent accumulation (or ablation) over the entire glacier. The winter, summer and annual balances are then calculated taking into account the specifics of the time system used (Section 3.6).

Figure 3.29 illustrates this method with an example from the Sátujökull basin of the Hofsjökull ice cap, Iceland. The increase of the winter balance with elevation can be approximated with a linear function (Figure 3.29 (b)), and the summer balance with two linear fits with different slopes. For the case shown, the summer balance is positive above 1 550 m elevation but negative below 1 550 m. The change in slope at 1 300 m is due to faster melting of glacier ice exposed in the ablation zone below 1 300 m during the latter part of the ablation season, when the winter layer has melted. The black line shows the net balance, from which the *equilibrium line altitude* (ELA), where net balance is zero, can be inferred to lie at 1 275 m in 2020. Together with the area-elevation distribution for this part of Hofsjökull (Figure 3.29 (a)), the point data allow calculation of area-averaged winter, summer and annual balances for the entire basin.

![Figure 3.29](image_url)

Figure 3.29. (a) The elevation distribution on Sátujökull, a northern transect of the Hofsjökull ice cap, central Iceland. Dots indicate areas of each 25-m elevation band in the altitude interval 800–1 800 m. Total area in 2020: 72.8 km². (b) Point values of winter, summer and annual balance on a north–south transect covering Sátujökull, plotted against elevation. (c) The total volume added or lost in each 100-m elevation band during the glaciological year 2019–2020. Results calculated using the *floating date system* (Section 3.6.2).

Source: Data from Icelandic Meteorological Office
Contour method. Another method is based on drawing mass-balance isolines (lines of equal mass balance) onto a map of the glacier, based on the point data. This can be done with GIS software. This method is particularly suitable for ice caps, but can be used for glaciers of all sizes. Separate maps can be made for winter, summer and annual balance. The drawing of isolines requires knowledge of conditions on the glacier, for example, of the effects of surface topography and prevailing winds on the distribution of snow accumulation. The area of each interval between two mass-balance isolines is then multiplied by the value represented by those lines and summation over the entire area yields the mass balance of the glacier. See example in Figure 3.30.

Statistical approaches. Several statistical approaches of varying complexity have been developed to infer glacier-wide mass balance from point measurements. For example, extrapolation to the spatial scale based on Kriging is a powerful approach when there is a relatively dense network of mass-balance stakes (see, for example, Hock and Jensen, 1999). However, simple approaches such as the linear mass-balance model originally proposed by Lliboutry (1974) are also used (see, for example, Thibert et al., 2008). No complete spatial extrapolation of mass balance is attempted in this approach but the spatio-temporal variability in glacier-wide mass balance is directly derived from point measurements. This method is also applicable for networks with relatively few index stakes (Van Beusekom et al., 2010; O’Neel et al., 2019). Terrain-based (or ‘topographic’) regression approaches can also be used to

Figure 3.30 Winter, summer and annual surface mass balance of the 7 700 km² Vatnajökull ice cap, Iceland, in the glaciological year 2019–2020, displayed with the contour method. Winter balance averages $B_w = 1.62$ m w.e. for the whole ice cap in this year. Summer balance averages $B_s = -2.02$ m w.e. and is negative over the entire ice cap except at elevations above 1 900 m. Net annual balance averages $B_a = -0.40$ m w.e. Climatic regimes on Vatnajökull vary widely, and thus ELA on the main outlets typically ranges between 1 100 m and 1 500 m, displaying significant interannual variability.

Source: Glaciology group, Institute of Earth Sciences, University of Iceland
extrapolate winter balances. This approach requires relatively extensive data but reproduces observed patterns of spatial variability. It has been used with GPR data sets (for example, McGrath et al., 2015, 2018; Sold et al., 2016) and traditional snow-pit and probe datasets (for example, Pulwicki et al., 2018, 2019).

Model-based extrapolation. Extending the above approaches, a combination of daily mass-balance modelling constrained with point observations in the field is also used (see, for example, Huss et al., 2009, 2021; Barandun et al., 2015). The basic approach is to use a daily distributed accumulation and temperature-index melt model to infer mass balances in unmeasured regions and to optimize it to agree with all seasonal point measurements that are available (Figure 3.31). The mass-balance model is not regarded as a physical model, but as a statistical tool for obtaining a daily temporal resolution based on seasonal field data and spatial interpolation of point measurements supported by a model. The advantages are, for example, that both winter and annual point data can be incorporated into the same evaluation scheme, allowing consistent analysis for all glaciers of a monitoring network. Furthermore, mass-balance components (accumulation and ablation) can be separated based on the model constrained with seasonal observations, and glacier-wide mass balance can be extracted over arbitrary time periods (for example, the hydrological year), which is important for intercomparing the signals of different glaciers.

![Figure 3.31. Model-based extrapolation of measured point mass balance on Findel Glacier, Switzerland. Annual observations are indicated by crosses and the measured point mass balance is stated in m w.e. The spatial mass balance variability is given by the daily mass-balance model, which includes the observed patterns of winter snow distribution as well as other relevant factors governing the spatial variability in mass balance (such as elevation, solar radiation and surface albedo).](image)

Source: Glacier Monitoring Switzerland (GLAMOS)
3.9.2 Geodetic methods to determine mass balance

The mass balance of a glacier over a specific time interval can be calculated based on repeated measurements of the surface elevation and the derived volume change that has occurred between the two surveys. This is referred to as the geodetic method. In general, it is possible to discern between (mainly) airborne geodetic surveys used for validation and calibration of glaciological mass-balance series (see, for example, Zemp et al., 2013) and (mainly) spaceborne geodetic surveys for regional mass-change estimates (see, for example, Brun et al., 2017). Recent developments in satellite processing have made it possible to map surface elevation changes at a high spatio-temporal resolution over all glaciers on the Earth (Hugonnet et al. 2021).

For glaciological mass-balance sites it is recommended to conduct geodetic surveys roughly at 10-year intervals (Zemp et al., 2013). To calculate the geodetic mass balance, the change in surface elevation must be converted to a mass change using a density conversion factor (see below). It is also possible obtain annual and even seasonal signals from the geodetic method (Belart et al., 2017; Klug et al., 2018; Pelto et al., 2019). Recent work on Wolverine Glacier, Alaska, demonstrates the potential of using repeat DEMs from lidar surveys and high-resolution satellite imagery to calculate distributed seasonal balances, taking into account the vertical component of ice flow and firn densification (Zeller et al., 2022).

Many different data sources can be used to map the glacier surface elevation: ground surveys (see, for example, Kapitsa et al., 2020), UAV surveys and aerial photographs (see, for example, Geissler et al., 2021), satellite images (optical and radar) (see, for example, Berthier et al., 2014; Brun et al., 2017) and lidar surveys (see, for example, Barrand et al., 2009; Klug et al., 2018). Surveys can cover the entire glacier or be conducted on transects resulting in elevation profiles, point clouds or regular grids of surface elevations. The data source will depend on the size of the glacier or region and on the instruments/resources available. A very small glacier may be mapped entirely using UAV or terrestrial laser scanning; the mass balance of medium sized glaciers may be mapped using aerial photos or airborne laser scanning, whereas larger regions are most efficiently mapped using satellite images. The optimum timing for carrying out geodetic surveys is the end of the ablation season. Surveying results from the two different points in time are usually converted to DEMs before the two DEMs are differenced applying the same datum and projection using GIS software (Figures 3.31 and 3.32). Misalignment between DEMs should be accounted for by co-registering the DEMs. A common way to do this is to compare stable terrain outside the glacier and check for misalignments (Nuth and Kääb, 2011). Systematic and random errors in the geodetic method can be assessed (see, for example, Zemp et al., 2013), especially when comparing with glaciological observations (see Section 3.9.4).

![Figure 3.32. Example of elevation changes of the southern part of Søndre (Southern) Folgefonna, Norway, 2007–2013 and 2013–2017 based on differencing of DEMs derived from airborne laser scanning in 2007, 2013 and 2017. The glacier basins of Svelgjabreen (Sv) and Blomstølskardsbreen (Bl) are marked.](image)

Source: Andreassen et al. (2020), reproduced with permission from the Journal of Glaciology
Glacier masks (polygons) are derived from the glacier outlines (Section 3.3.2) for the two periods. When ice divides are used for the delineation of glaciers, the same ice divide should be used for both periods. If profiles are used for one or both surveys, the point datasets (from repeated profile mapping) or point dataset versus DEM dataset are differenced, and the resulting point data differences are interpolated to yield glacier-wide averages.

The geodetic mass balance, \(B_{\text{geod}} \) (in m w.e. a\(^{-1}\)), is calculated by multiplying the volume change, \(\Delta V \), by a density conversion factor, \(f_{\Delta V} \), and then dividing by the average glacier area of the two surveys (assuming linear area change with time) \(A_m \) and the time interval \(\Delta t \) between the two surveys:

\[
B_{\text{geod}} = \frac{(\Delta V \cdot f_{\Delta V})}{(A_m \cdot \Delta t)}
\]

(3.4)

The density conversion factor \(f_{\Delta V} \) is often set to 850 ± 60 kg m\(^{-3}\) (Huss, 2013), accounting for changes in firn volume and density that occur simultaneously with a reduction or an increase in glacier volume. However, over short time intervals (<5 years) and for small volume changes, values of \(f_{\Delta V} \) may strongly deviate from the recommended reference value and can thus represent an important source of uncertainty.

3.9.3 Detecting and correcting bias in glaciological mass-balance records

To ensure the long-term consistency of glaciological mass-balance series, a periodical validation against independent geodetic surveys is important to detect biases (see, for example, Zemp et al., 2013). A bias in glaciological surveys is not uncommon as a glacier-wide assessment of point measurements requires extrapolation. Therefore, the homogenization and reanalysis of mass-balance records is highly relevant and frequently conducted in monitoring programmes (see, for example, Cox and March, 2004; Huss et al., 2009; Zemp et al., 2010; Andreassen et al., 2016b; O’Neel et al., 2019). The basic concept is to compare cumulative mass change from annual glaciological surveys with geodetic mass change over the same period. Whereas the glaciological mass balance provides a high temporal resolution, as well as the spatial distribution of mass-balance components, geodetic surveys more accurately capture the mass change signal of the entire glacier.

Before comparing cumulative annual mass balances to geodetic ice-volume changes, differences in the dates of these independent data acquisition methods need to be taken into account. This can be achieved by adding total mass change as computed by a mass-balance model for the period between the acquisition date of the geodetic survey and the date of field measurements.

In the ideal case, the cumulative direct mass balance coincides with the geodetic mass change. Zemp et al. (2013) provide a detailed framework for deciding whether a misfit between cumulative glaciological mass balance and geodetic mass changes is significant and should be corrected. This mainly depends on the estimated uncertainties in direct point observations and the mass balance extrapolated to the whole glacier, and the uncertainty in geodetic ice-volume change. If there is a significant bias between glaciological and geodetic series, it is suggested that the interpolation of in situ point mass balance to the entire glacier be updated in order to yield a corrected cumulative series better matching the geodetic mass changes.

Figure 3.33 shows the comparison of long-term annual in situ measurements of mass balance (blue) with independent volume changes derived from geodetic surveys (red) on Allalingletscher, Switzerland. In most periods, the agreement between cumulative annual mass balance based on the direct measurements and remotely-sensed elevation change is satisfactory and no adjustment of the glaciological data series was needed (Huss et al., 2015).

3.9.4 Uncertainty in mass changes determined based on the geodetic method

A detailed assessment of the uncertainties is necessary when applying the geodetic method for estimating mass changes. As the approaches to derive DEMs are manifold – ranging from terrestrial and aerial photogrammetry to satellite radar and altimetry – it is beyond the scope of the present chapter to provide a comprehensive description of methodologies to determine...
uncertainties. Nevertheless, there are some important general aspects that characterize the uncertainties in the geodetic method. It is possible to differentiate between uncertainties due to: (1) random errors in local surface elevation, (2) systematic errors at the scale of entire glaciers or regions, (3) effects of inaccurate glacier outlines, and (4) the conversion from volume to mass change. Whereas for (1) the quality and resolution of the available imagery and the conditions during acquisition are relevant, co-registration of the digital elevation models, as well as potential biases (for example, due to radar wave penetration into snow and firn) need to be considered for (2). For more details regarding the individual processes that define overall uncertainty, as well as their estimation and combination, the reader can consult references such as Rolstad et al. (2009), Nuth and Kääb (2011) and Joerg et al. (2012). Hugonnet et al. (2022) provide a comprehensive overview to reconcile the uncertainties of the geodetic method from the local to the regional scale.

Figure 3.33. Allalingletscher, Switzerland: Comparison of annual mass-balance series derived based on the glaciological method (blue) with independent ice-volume changes (red) based on periodic geodetic surveys

Source: Huss et al. (2015)
APPENDIX. SAFETY MEASURES DURING FIELDWORK ON GLACIERS

Purpose

Working on and around glaciers presents numerous hazards – crevasses, sudden glacier floods, harsh weather and ice avalanches to name a few. It is therefore essential that personnel conducting glaciological fieldwork have relevant knowledge of conditions on glaciers, receive appropriate training and have full access to safety equipment (Figure 3.34). Training should be offered on a regular basis.

This summary is based on a document made for employees at the Norwegian Water Resources and Energy Directorate (NVE) and includes a short listing of essential equipment, knots and skills required for safe glacier travel. Basic knowledge for employees who perform fieldwork on glaciers is also outlined. Other proven techniques with equivalent or better function can also be used. A full translation is available at: https://www.nve.no/hydrology/glaciers/safety-on-and-near-glaciers/.

Personal safety equipment required for work on glaciers

- 1 rope (30 m × 9 mm). Minimum “rando”-rated (marked 0), preferably rated as a half rope (1/2). Maximum age 10 years.
- 2 progress-capture pulleys
- 1 rope clamp (Tiblock)
- 2 short slings (30 cm) (or small ropes for tying in/friction hitch – 1.2 m × 5 mm). Maximum age 10 years.
- 2 long slings (120 cm) (or rope sling of 9 mm rope adjusted for body length). Maximum age 10 years.
- 6 locking carabiners; 5 screw-lock carabiners and 1 HMS carabiner
- 2 ice screws ~21 cm
- 1 harness; maximum age 10 years
- 1 pair of crampons
- 1 snow anchor
- 1 gear bag

Knots

- Loop (roping inn, anchoring), see: https://www.animatedknots.com/figure-8-follow-through-loop-knot
- Double or single fisherman’s knot (for joining ropes), see: http://www.animatedknots.com/doublefishermans
CHAPTER 3. MEASUREMENT OF GLACIERS

Figure 3.34. Walking on a snow-covered glacier in rope, with equipment easily available in harness and ice axe as well as probe in hand. Here two ropes are used, one with knots used to create friction.

Source: Liss M. Andreassen

- Friction knot (prusik, French prusik) – roping in/self-belay, see: http://www.animatedknots.com/prusik
- Munter hitch (descent, rapell), see: http://www.animatedknots.com/muntermule
- Double half hitch, see: http://www.animatedknots.com/clovehalfhitches

Recommended gear for the harness

- Travel on foot on bare ice: minimum one ice screw and one long sling for self-securing when falling into a crevasse or when stuck
- On skis or foot on snow: minimum one ice screw and one long sling for self-securing when falling into a crevasse
- Helicopter snow/ice: empty harness, with all gear easily available inside the helicopter
- Snow Scooter: empty harness, with all gear easily available on the scooter

Important field techniques

- Setting up anchoring points
- Securing buddies from anchoring points
- Intermediate anchoring
- Hauling systems for crevasse rescue
- Rappelling
- Two-person rope teams for snow
- Rescue in two-person rope team
- Ascending a rope using prusik knots
- Moving in and out of a helicopter on glaciers

Other resources for safety best practice guides

REFERENCES

Björnsson, H. *Hydrology of Ice Caps in Volcanic Regions*; Rit / Visindafélag Islanda; 45; Societas Scientarium Islandica, University of Iceland: Reykjavik, 1988.

Rekstad, J. *Jakttagelser fra bræer i Sogn og Nordfjord*; NGU, 1902. https://openarchive.ngu.no/ ngu-xmlui/bitstream/handle/11250/2675062/NGUUnr_34_3_Rekstad_s.1-47.pdf.

For more information, please contact:

World Meteorological Organization
7 bis, avenue de la Paix – P.O. Box 2300 – CH 1211 Geneva 2 – Switzerland

Strategic Communications Office
Tel.: +41 (0) 22 730 83 14
Email: cpa@wmo.int

wmo.int